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Abstract

Background: The study of adverse drug events (ADEs) is a tenured topic in medical literature. In recent years, increasing
numbers of scientific articles and health-related social media posts have been generated and shared daily, albeit with very limited
use for ADE study and with little known about the content with respect to ADEs.

Objective: The aim of this study was to develop a big data analytics strategy that mines the content of scientific articles and
health-related Web-based social media to detect and identify ADEs.

Methods: We analyzed the following two data sources: (1) biomedical articles and (2) health-related social media blog posts.
We developed an intelligent and scalable text mining solution on big data infrastructures composed of Apache Spark, natural
language processing, and machine learning. This was combined with an Elasticsearch No-SQL distributed database to explore
and visualize ADEs.

Results: The accuracy, precision, recall, and area under receiver operating characteristic of the system were 92.7%, 93.6%,
93.0%, and 0.905, respectively, and showed better results in comparison with traditional approaches in the literature. This work
not only detected and classified ADE sentences from big data biomedical literature but also scientifically visualized ADE
interactions.

Conclusions: To the best of our knowledge, this work is the first to investigate a big data machine learning strategy for ADE
discovery on massive datasets downloaded from PubMed Central and social media. This contribution illustrates possible capacities
in big data biomedical text analysis using advanced computational methods with real-time update from new data published on a
daily basis.

(JMIR Med Inform 2017;5(4):e51) doi: 10.2196/medinform.9170
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Introduction

Background
Adverse drug events (ADEs), defined as the set of detriments
or injuries caused by a medication, have led to additional
medical costs, prolonged hospitalization, morbidity, and

ascribable disability worldwide [1-4]. ADEs encompass all
adverse drug reactions but also include preventable causes of
errors such as inappropriate dosing, dispensing errors, and drug
abuse. Discovery of ADEs has gained great attention in the
health care community, and in the last few years, several drug
risk-benefit assessment strategies have been developed to
analyze drug efficacy and safety using different medical data
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sources, ranging from electronic health records (EHRs) to
human-health–related social media and drug reviews [5-14]. A
variety of combined computational methods using natural
language processing (NLP), machine learning strategies, and
text retrieval algorithms have been employed to extract ADEs
from such data sources [15-23]. Clinical trials, EHRs, and
medical case reports are additional biomedical data-rich sources
that have been utilized for ADE extraction [24-28].

In recent years, biomedical articles produced by scientists all
across the world have grown extensively. Figure 1 [29] shows
that the number of journal and conference papers published in
different medication studies (eg, ADEs and drug analysis, drug
evaluation, and drug repositioning) rapidly grew in number
from year 2007 to 2016. The total number of publications in
those years is approximately 342,301 articles. To roughly
estimate the size of such scientific papers, we assumed a PDF
file format for each article. The size of a PDF file depends on
the number of pages and pictures or metadata inside the file.
Considering a 9 to 11 page PDF including plain text along with
a few pictures, it may equal almost 3 MB size in average, and
it appears, approximately 1.02 TB articles were generated in
drug associated studies from 2007 to 2016. The other file
formats such as extensible markup language (XML), may be
much larger in size. Scientific articles published in biomedical
research are usually generated using standardized and principled
methods and therefore, are especially valuable for high-quality
knowledge discovery. This great deluge of information includes
an enormous number of scientific publications on ADEs’study,
an area of focus into which many biomedical researchers have
entered, developing a variety of research activities for
discovering, analyzing, and monitoring ADEs [30-38].

It is impossible for researchers, scientists, and physicians to
read and process the large body of scientific articles and remain
abreast of the foremost information regarding ADEs. Therefore,
there is a pressing need to develop intelligent computational
methods, particularly big data analytics solutions, to efficiently
process this wealth of data. Big data biomedical text analysis
utilizes advanced computational technologies including big data
infrastructure, NLP, statistical analytics, and machine learning
algorithms to extract facts from text data. This in turn generates
new hypotheses by systematically analyzing large numbers of
scientific publications.

Objectives and the Main Contributions
Whereas ADE discovery from diverse biomedical data sources
in general has been studied historically in health care
informatics, the use of big data scientific articles and
health-related social media for ADE discovery has been very
limited so far. The motivation of this work is to study big data
machine learning solutions, particularly big data neural networks
(bigNN), to analyze ADEs from large-scale biomedical text
data, developing a scalable framework to fulfill the following
objectives: (1) to extract current knowledge and high-quality
information about ADEs using full text scientific articles and
social media, (2) to utilize and adapt advanced NLP and machine
learning algorithms in a large-scale fashion by the use of big
data infrastructures, and (3) to provide better insights and
tendencies in large-scale biomedical text analytics and identify
the challenges and potential enhancements toward efficient and
accurate ADE discovery. We briefly summarize our main
contributions as follows:

Figure 1. The number of publications in several medication studies available at PubMed over the last 10 years. The results obtained by submitting a
query: ((((((((((drug analysis[MeSH Terms]) OR drug analysis[MeSH Subheading]) OR adverse drug event[MeSH Terms]) OR adverse drug event[MeSH
Subheading]) OR adverse drug reaction[MeSH Terms]) OR adverse drug reaction[MeSH Subheading]) OR drug evaluation[MeSH Terms]) OR drug
evaluation[MeSH Subheading])) OR drug repositioning[MeSH Terms]) OR drug repositioning[MeSH Subheading].
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We initiated a study of big data literature mining for ADE
discovery with the use of two different data sources: (1)
published full text scientific articles available on PubMed
Central [39], and (2) posts available in health-related social
media, including MedHelp [40], patient [41], and WebMD [42].
Although several promising approaches have been designed for
biomedical text mining, the development of scalable machine
learning frameworks capable of ADE extraction from big data
is very limited. To the best of our knowledge, our work is the
first to investigate a bigNN strategy for ADE discovery on
massive datasets downloaded from PubMed Central and social
media.

• With the current work and using big data analytics platforms
such as Elasticsearch and Apache Spark, we developed a
scalable framework to analyze and visualize ADEs from
hundreds of thousands of published scientific articles and
social media blog posts.

• Combining a variety of the internal neural network
parameters, we presented a predictive model that obtained
accuracy, precision, recall, and area under 92.7%, 93.6%,
93.0%, and 0.905, respectively, on a massive dataset
downloaded from PubMed Central plus health-related social
media.

• This paper opens the door to pursue large-scale biomedical
literature mining and its application in health care
informatics in general and introduces several possible
enhancements to advance the level of the impact of this
research area.

Methods

The general pipeline of the proposed ADE extraction framework
is illustrated in Figure 2. In this section, we shall explain the
underlying tiers of the proposed bigNN framework.

Tier 1: Data Access
Tier 1 systematically collects the expanding body of scientific
articles and social media blog posts through different data
sources available on the Internet. A multi-threaded crawler or
downloader was developed to provide timely and efficient
processing of the diverse big data content found on the Internet.
Scrapy [43], a free and open source Web crawling system has
been used to allow multiple threads to automatically fetch URLs
from different sources. A queuing system and a scheduler have
also been established as a part of the data access tier.
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Figure 2. The proposed system for adverse drug event (ADE) discovery. All tiers developed on top of the Apache Spark 2.0 that utilizes an Elasticsearch
database 2.4.1 to data storage and retrieval.

All collected data (eg, XML files) are first turned into plain text
data, and together with associated metadata (eg, journal name,
author list, and publication date) are stored in a single type (table
type) inside a No-SQL database, namely Elasticsearch [44],
which provides a distributed, open source, RESTful and full
text search and analytics engine.

Tier 2: Natural Language Processing
Tier 2 includes several computational procedures to process
raw text data, preparing potential ADE sentences to feed the
next tier.

Selecting Relevant Documents
One of the major goals of the proposed system was to collect
groups of sentences that provide evidence about drug-event
pairs. Toward that outcome, there is an emergent need to identify
trustworthy and reputable data sources (eg, well-founded and
prestigious journals such as Nature, PNAS, and PLOS). As the
proposed framework accumulates data from two separate data
sources, including scientific journals and messages posted on
social media, we established two different criteria to yield more
credible data. Section A.1 of Multimedia Appendix 1 further
discusses the proposed method and criteria.
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Text Processing
We first normalize all documents by converting corpora into a
standard consistent form. This process (1) converts all characters
to lower case, (2) transliterates to American Standard Code for
Information Interchange if needed, and (3) deletes a set of
existing substrings and patterns (eg, [], , ?, !, and ()). Once we
complete the proposed text normalization process, we convert
every document into a set of sentences. Although several ADEs
could be captured among different sentences, extracting ADEs
interactions across sentences is significantly more challenging
than within sentences [6,45]. To feed the bigNN system, a
random subset of sentences was selected for manual annotation
by three domain experts; see Section A.2 of Multimedia
Appendix 1 for details. The random subset of sentences includes
health and medical-related text data either with or without ADE
interactions. Sentences that are missing either a drug name or
an adverse drug effect term were excluded. Using a Web
application (Multimedia Appendix 1), the domain experts
labeled individual sentences as ADEs, No-ADEs, or Not
Decided. To focus on binary classification, we omitted sentences
labeled “Not Decided” leaving two different classes: (1) ADEs
and (2) No-ADEs. Section A.2 of Multimedia Appendix 1
explains how we made a training set for the machine learning
tier.

Tier 3: Machine Learning
Tier 3 implements the core functionality needed for making a
predictive model to distinguish ADEs sentences versus those
that are No-ADEs. From the machine learning perspective, this
means making a binary classification predictive model that
assigns one of two trained labels to new unlabeled sentences.
Therefore, when an arbitrary sentence arrives, the predictive
model chooses one category exclusively from two predefined
classes as ADEs or No-ADEs. There are two basic steps. The
first step is to extract effective content as a set of features. The
next step is the text classification assignment. The bag-of-words

(BoW) representation, a widely used content extractor algorithm,
has been around for several years in the text analytics domain,
and it provides an easy way to turn text-based data records into
a set of feature vectors such that the frequency of occurrence
of words (eg, uni-grams and/or bi-grams, along with
part-of-speech [POS] tagging) in the corpus is used as a feature
vector to train a classifier (eg, support vector machine [SVM],
decision tree, and/or logistic regression) [46-51]. The BoW
representation maintains word intensities across the corpus, but
it dissembles grammar, syntactic, semantic, and word order. In
contrast to the BoW representation, the word2vector (word2vec)
algorithm, originally developed at Google [52], includes a set
of computational methods that turns a corpus of text data into
a meaningful vector space that encompasses grammar, semantic,
and word order. Word2vec comes with a two-layer neural
network and is able to tackle several text analytics functions
including dependency parsing [53,54], named entity recognition
[55,56], text classification [57,58], and word clustering [59].
The model takes a text corpus as an input and turns each word
in the corpus into a vector as illustrated in Section A.3 of
Multimedia Appendix 1. It then groups vectors of similar words
together in a vector space, training words against other words
that neighbor them in the input text corpus [60,61]. Our bigNN
system implemented the word2vec neural network, which is
fully explained in Section A.3 of Multimedia Appendix 1.

An abstract view of the proposed learning algorithm is shown
in Figure 3. As mentioned in Section A.3 of Multimedia
Appendix 1, the algorithm builds a vector representation for
words and/or sentences. If we train a learning model with
98-dimension, then we will obtain a 98-digit in front of each
word (eg, “aspirin”). The cosine distance similarity [62,63],
which is the normalized dot product between vectors, is then
measured to find the best fitness class for a sentence. Once we
have the labeled sentences as ADEs or No-ADEs, we focus on
ADE sentences and find the positive adverse-drug interactions
using cTAKES [64].
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Figure 3. This figure depicts the abstract view of the proposed learning model where the cosine distance similarity is measured to select an appropriate
category for a given sentence. Every single word is represented as a vector, and eventually every sentence (eg, adverse drug events [ADEs] or No-ADEs)
turns in to a vector space. Once we have done with training the model, for every new coming sentence, the highest cosine distance value is then measured
to find the best fitness class.

Results

Implementation and Test Bed
We investigated two different data sources: (1) biomedical
articles and (2) health-related social media blog posts. The first
data source included 97,246,719 sentences obtained from almost
1,451,413 abstracts and full text articles available on PubMed
Central, and the second one consisted of 2,524,622 sentences
obtained from 419,915 blog posts at MedHelp, Patient, and
WebMD. To train our proposed predictive model illustrated in
Figure 2, we first randomly selected different subsets for the

purpose of manual annotation. Those subsets were annotated
by three domain experts who have been working in medical and
pharmacy domains. We defined two different classes as ADEs
and No-ADEs to indicate drug-event interactions in a sentence.
The sentences that included positive drug-event interaction were
tagged as ADEs, and the others were tagged as No-ADEs.
Before the large-scale manual extraction, we evaluated the
interrater reliability among our three domain experts, the results
of kappa statistics, .84, which indicates very good concordance
and agreement; more details are reported in Section A.2 of
Multimedia Appendix 1.
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Table 1. Nine datasets were employed to make and evaluate the big data neutral network (bigNN) system. Each row identifies the dataset along with
the number of ADEs and No-ADEs sentences within the dataset. Every row also shows how many of these sentences are human-labeled and/or
machine-labeled. The datasets are separated into three main categories: biomedical articles (*_BA), social media posts (*_SM), and the combination
of the two (*_Combined).

Number of machine-
labeled sentences

Number of human-
labeled sentences

Number of No-
ADEs sentences

Number of ADEsa

sentences
Total number of
sentences

Dataset ID

06960364933116960ADEs#1_BA

0400240160400ADEs#1_SM

07360388934717360ADEs#1_Combined

653070157186635913,545ADEs#2_BA

67405277195472ADEs#2_SM

659774207463655414,017ADEs#2_Combined

14,263701510,97110,30721,278ADEs#3_BA

160405324241565ADEs#3_SM

14,423742011,29510,54821,843ADEs#3_Combined

aADEs: adverse drug events.

Next, we developed nine different datasets from those sentences
to train the proposed bigNN system. The first set of datasets
(the first three rows in Table 1) used only human-labeled
datasets from our domain experts. Within these three datasets,
three types of sentences were generated: the first type was
biomedical articles, the second was social media, and the third
was the combination of the two. For the second set of datasets
(the three datasets in the middle of Table 1), we added some
machine-labeled datasets (the number of datasets were reported
in the last column, “number of machine-labeled sentences” of
Table 1) with human-labeled datasets to increase the sample
sizes. We also generated three types of sentences as illustrated
above. For the third set of datasets (the last three rows of Table
1), we added in more machine-labeled datasets with
human-labeled datasets; similar three types of sentences were
generated.

We also utilized three smaller datasets, including 2600, 3500,
and 4000 human-labeled data records and plotted learning curves
to see how the accuracy of the predictive model varies with
increasing amount of training data. The results were not
promising enough, and we started with a larger human-labeled
dataset as illustrated in the first three rows in Table 1. For all
the experiment, we utilized 75% of every dataset to train the
model and 25% to test it using four-fold cross validation, with
no sentence to appear in both the training and testing sets at the
same time.

Experimental Setup
Every programming module in Tier 1 and Tier 2 was developed
by Python 2.7.13. Tier 3, the machine learning tier, was
implemented by Java j2SE 8. All of these tiers were developed
on top of the Apache Spark 2.0 [65] and Elasticsearch DB 2.4.1
[44] just to tackle the problem of big data analytics in an
efficient and timely fashion. From the computational side, a
dedicated computational resource, including two virtual
machines in a VMWARE cluster environment, each running a
64-bit CentOS 6.8 operating system with 8 vCPUs, 16 GB RAM,

and 1 TB HDD in total, hosted on a Xeon E5-2690V3 2.6 GHz
CPU, were used to obtain the experimental results.

Experimental Validations
We analyzed the performance of the predictive model across
all the datasets. Accuracy, precision, and recall obtained by the
experiments are shown in Multimedia Appendix 2. The first
column shows the dataset used to in the experiments. The second
column describes a configuration setup for a set of internal
parameters of the proposed neural network model. Minimum
word frequency (MWF) allows for ignoring all words in the
vocabulary with total occurrences lower than MWF value. Epoch
(EP) is the number of forward and backward passes of all
training examples. Window size (WS) defines context windows
size to generate a vector representation for words across the
documents. Iteration (ITR) defines the number of iterations
done for each mini-batch during a training process. The last
column shows elapsed time for the training stage. This does not
reflect the time of text-preprocessing tasks such as normalization
and tokenization. The current table shows that greater EP and
ITR with the use of WS of two will provide better performance
across all three datasets. To further analyze our proposed ADEs
sentence discovery system, we also compared the proposed
predictive model with the combination of BoW feature selection
method and SVM, decision tree, and naïve Bayes classifiers.
Uni-grams, bi-grams, along with POS tagging were used as
BoW features to make a predictive model. One can see in
Multimedia Appendix 2, the most promising accuracy results
across all datasets obtained by the (MWF=2%, EP=25, WS=2,
and ITR=10) configuration. Furthermore, we demonstrated that
the performance of bigNN system, both accuracy and time of
completing the task, is comparable with traditional SVM, naïve
Bayesian, and decision tree with BoW strategy. The results of
this experiment are shown in Table 2. All the measures in Table
2 are selected from the best performed model by tuning the
models using different parameters for all the bigNN system and
SVM, naïve Bayesian, and decision tree with BoW strategy.
Regarding the BoW feature set, we obtained the best results by
utilizing a combination of uni-grams and bi-grams, together
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with POS tagging. With respect to the traditional machine
learning classifiers, and for example SVM, the best performance
was achieved with the use of radial basis function kernel, loss
of 0.12, seed of 1, and without normalization of input data.

For each of the datasets shown in Table 2, we split the data
randomly as 75% to train and 25% to test the proposed sentence
classifier system. The best accuracy results using our proposed
predictive model were obtained by MWF=2%, EP=25, WS=2,
ITR=10 configuration. Regarding the BoW features set, we
utilized a combination of uni-grams, bi-grams, and POS tagging.
Using the proposed predictive model, the vocabulary size for
ADEs#1_Combined, ADEs#2_Combined, and
ADEs#3_Combined datasets were 15125, 26,448, and 37,524,
respectively.

Whereas with the use of BoW, when it utilized uni-grams,
bi-grams, and POS, the vocabulary size was 33,567, 59,941,
and 76,758 for datasets ADEs#1_Combined,
ADEs#2_Combined, and ADEs#3_Combined. For SVM,
decision tree, and naïve Bayes classifiers, we utilized Weka
library (version 3.7.12) [66] running on hadoop-2.7 [67] by the
use of Hadoop distributed file system.

The study shows that bigNN system generates better results in
comparison with traditional BoW along with SVM, decision
tree, and naïve Bayes classification algorithms. Area under the
curve (AUC) of our proposed predictive model across all three
datasets was also analyzed, and it is shown in Figure 4.

The current test results are only as good as the predictive model
developed in the training phase. We accomplished further

experiments just to make sure that the predictive model is
sufficiently accurate in assigning appropriate classes for new
unlabeled data records. Our approach was to rely on human
reviews. We fed the proposed word2vec predictive model with
new unlabeled data records and gave a random subset of the
system output five hundred system-labeled instances to two
domain experts to review. We got 87.6%, 86.1%, and 88.7% in
average for accuracy, precision, and recall, respectively.

We briefly summarized the experimental results as follows:

The results we obtained showed that the use of combined dataset
was better than the use of either source individually (Table 1)
for all the models and is statistically significant (at P=.04).

The results illustrated in the Multimedia Appendix 2 show that
a greater epoch along with a greater iteration with the use of
window size of two tend to be useful over all datasets using
bigNN system, and the result is statistically significant (at
P=.02). However, it requires a longer training time.

The comparative study shown in Table 2 demonstrates that the
bigNN system was able to generate better results in comparison
with traditional BoW along with SVM, decision tree, and naïve
Bayes classification algorithms. Performing a t test on AUC
matched by those models shows statistically significant
differences (at P=.03) between our bigNN system and those
two models utilizing BoW along with decision tree and naïve
Bayes. It also shows no statistically differences employing BoW
and SVM.

Table 2. The comparisons of our big data neutral network (bigNN) system with traditional bag-of-words (BoW) method using support vector machine
(SVM), decision tree, and naïve Bayes classifiers.

Training
time (min)

Area under the receiver
operating characteristic

Recall (%)Precision
(%)

Accuracy
(%)

Number of
sentences

Learning methodDataset ID

45.70.84289.488.588.77360bigNNb systemADEs#1_Combineda

66.30.84188.088.389.47360BoWc + SVMdADEs#1_Combined

49.50.77582.183.784.07360BoW + decision treeADEs#1_Combined

48.90.76383.582.183.77360BoW + naïve BayesADEs#1_Combined

69.50.87489.388.989.114,017bigNN systemADEs#2_Combined

88.90.87589.788.089.514,017BoW + SVMADEs#2_Combined

75.20.86184.584.985.514,017BoW + decision treeADEs#2_Combined

73.80.85585.784.084.314,017BoW + naïve BayesADEs#2_Combined

121.70.90593.093.692.721,843bigNN systemADEs#3_Combined

159.50.91193.294.092.521,843BoW + SVMADEs#3_Combined

131.50.86887.287.588.321,843BoW + decision treeADEs#3_Combined

135.30.85185.886.287.521,843BoW + naïve BayesADEs#3_Combined

aADEs: adverse drug events.
bbigNN: big data neutral network.
cBoW: bag-of-words.
dSVM: support vector machine.
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Figure 4. This figure shows the area under the curve (AUC) of our proposed predictive model. ADEs: adverse drug events.

Table 2 also shows that our bigNN system was faster than the
BoW method along with SVM, decision tree, and naïve Bayes
classification algorithms. Performing a t test on training time
matched by those methods presents statistically significant
differences (at P=.03) between our proposed model and all those
three models developed by BoW along with SVM, decision
tree, and naïve Bayes.

The AUCs presented in Figure 4 show that larger training
samples tend to add benefit when making an accurate and
reliable predictive model.

To further analyze the results, the next section will present a
set of ADEs’ scientific visualizations obtained using the
proposed framework.

Scientific Visualization of ADEs
Scientific visualization is concerned with representing large
and highly dimensional information by means of charts, graphs,
and images. The general objective of any scientific visualization
is to improve understanding of the data being investigated. In

this section, we scientifically visualize the ADE information
extracted by our proposed system. Once the system was trained
across the different datasets, we fed the system new unlabeled
data. This included 92,681,359 sentences from biomedical
articles downloaded from PubMed Central and 1,624,117
sentences from social media, including MedHelp, Patient, and
WebMD. There are considerable amounts of drugs and adverse
events, and it is beyond the scope of this paper to visualize all
of them. Here, we limited ourselves to the list of 28 drugs as
illustrated in Table 3. The proposed system could find 12,265
ADE sentences from biomedical articles and 181 ADE sentences
from three social media sources using the drug list defined.

Figures 5 and 6 show ADE discovery visualization results
obtained from the biomedical articles and social media,
respectively. Figure 7 represents a set of word cloud examples
generated for ADEs associated with “aspirin,” “atenolol,”
“gabapentin,” and “statins.” A word cloud is a graphical
representation composed of different words contained in a
corpus, in which the size of every word indicates its frequency
or importance to the text.
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Table 3. The list of the drugs used to make the scientific visualization results.

Drug nameRow ID

Anesthesia1

Antihistamine2

Antipsychotic3

Aspirin4

Atenolol5

Atorvastatin6

Azithromycin7

Dexamethasone8

Diazepam9

Dopamine10

Ephedrine11

Gabapentin12

Galantamine13

Heparin14

Ibuprofen15

Lamotrigine16

Lorazepam17

Melatonin18

Meloxicam19

Metformin20

Methylphenidate21

Ondansetron22

Orlistat23

Sildenafil24

Statins25

Vioxx26

Warfarin27

Wellbutrin28
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Figure 5. The adverse drug events’ (ADEs’) visualization results obtained from biomedical articles. One can see the number of “anesthesia” observations
is 2186, where the most frequent adverse drug events are “hypotension,” “nausea,” “aspiration,” and “depression,” respectively. Using the CI of 95%,
Pr(hypotension|anesthesia) is between 20.5% and 23.5%, and Pr(nausea|anesthesia) is some point between 12.0% and 14.7%. Another example is
“gabapentin” where the most frequent adverse drug events based on ADE sentences extracted from biomedical articles are “dizziness,” “nausea,”
“fatigue,” and “edema” whereas the number of “gabapentin” is 261. Using the CI of 95%, Pr(dizziness|gabapentin) is between 33.0% and 44.2%.
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Figure 6. The adverse drug events’ (ADEs’) visualization results obtained from health-related social media. One can see the number of “metformin”
observations is 28, where its most frequent ADEs are “nausea,” “diarrhea,” “vomiting,” “dizziness,” and “stomach pain,” respectively. Another example
is “atenolol” and its most frequent adverse events are “depression,” “bradycardia,” “hypotension,” “tiredness,” and “dizziness.” From the adverse events
aspect, this figure shows, for example, “nausea” as an adverse event is mostly associated with “metformin,” “dexamethasone,” “antihistamine,”
“wellbutrin,” and “sildenafil”.
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Figure 7. The word cloud representations for “aspirin,” “atenolol,” “gabapentin,” and “statins.” (1) These results are obtained from biomedical articles.
Whereas the most frequent adverse dug events for “statins” are “myopathy,” “rhabdomyolysis,” “myalgia,” “fatigue,” and “hepatic dysfunction” as
shown in (D), the most frequent ADEs for “atenolol” are “depression,” “hypotension,” “bradycardia,” and “impotence,” respectively (B). (2) These
results are extracted from social media. Whereas the most frequent ADEs for “statins” are “rhabdomyolysis” and “fatigue” (D), the most frequent ADEs
for “atenolol” are “depression,” “bradycardia,” “hypotension,” and “dizziness,” respectively (B).

Discussion

Principal Findings
Modern medical data sources ranging from clinical trials, EHRs,
and medical case reports to scientific articles and patients’ blog
posts are rapidly growing in size and complexity, and scientific
biomedical articles, as well as health-related social media are
under-researched data sources for biomedical studies. Thus,

there is a pressing need to develop efficient solutions to harness
this wealth of data using advanced computational methods such
as artificial intelligence and big data machine learning.

With this contribution, an attempt was made to design and
develop a computational bigNN system to detect, analyze, and
visualize ADEs from massive data sources obtained from
PubMed Central, a widely referenced repository of scientific
articles, and the social media blog posts existing in MedHelp,
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Patient, and WebMD. The model was developed using the
word2vec neural network architectural on top of the Apache
Hadoop cluster, Apache Spark, and Elasticsearch No-SQL
distributed database to tackle efficient big data ADE
identification. We accomplished extensive experimental
validations to ensure that the proposed predictive model can
accurately assign appropriate classes (eg, ADEs or No-ADEs)
for both current and also new unlabeled data records. Our trained
system was able to detect a number of well-known ADEs from
unlabeled data taken directly from the literature. A list of
well-known ADEs can be found in Multimedia Appendix 1.
Warfarin is an extremely effective anticlotting agent primarily
used for patients at high risk for stroke or heart attack because
of atrial fibrillation that, up until recently, has been a cornerstone
of treatment. One common and potentially serious adverse effect
of warfarin therapy is bleeding. This can occur because of
changes in diet, drug interactions, or spurious physiological
changes. The effectiveness of warfarin coupled with a high risk
for serious bleeding events led to extensive research and
publication in the medical literature, which is very apparent in
our data visualization. Similarly, the widespread use of aspirin,
which also carries a risk of bleeding, has been extensively
studied for primary prevention of heart attack, colorectal cancer,
and for secondary preventions of cardiovascular events, which
is also captured in our results. Our system also identifies serious
but rare side effects such as lactic acidosis caused by metformin
use and rhabdomyolysis attributed to statin therapy. Common
drug side effects are also captured, although with a smaller
number of hits. Examples in Figure 5 include ADE pairs of
metformin and diarrhea, antipsychotics and weight gain,
gabapentin and dizziness, and drowsiness with antihistamines.

The findings of our system shed light on areas for future work
and on inherent challenges with semantics and context in NLP.
The following examples will illustrate some of these challenges.
Our system identifies nausea and vomiting as ADEs associated
with dexamethasone. Although it is true that dexamethasone
can cause these reactions, it is commonly prescribed to prevent
nausea and vomiting associated with chemotherapy. Without
more contextual clues from the free text in the articles, it is
impossible for us to decide whether dexamethasone is being
identified as a treatment or a causal agent in this case. Another
example where our system identified an indication as an ADE
was with lamotrigine and seizures. Seizure is a primary
indication for the use of lamotrigine and not a causal agent.
Successfully classifying these edge cases may require additional
labeled data, a larger window size, or other unexplored
techniques and is an area for further study.

The ADEs identified from our analysis of social media provide
a number of interesting similarities and differences with those
in the literature. In our social media results, as might be
expected, we see a larger proportion of ADEs related to the
more common side effects of drugs as compared with the
literature. For example, we see a large proportion of sentences
identified for nausea and diarrhea with the use of metformin
and fewer mentions of abdominal pain and vomiting. This
parallels nicely with the incidence expected in real-world use.
In contrast, we see a high proportion of sentences labeled for
lactic acidosis, an extremely rare ADE associated with

metformin use from the literature. The number of sentences
describing adverse drug events in biomedical text articles is
highly variable and includes influencing factors such as the
severity of the drug reaction, safety concerns eliciting directed
study, and the goals and intent of the research paper.
Non-life-threatening ADEs are less important to clinical
researchers, assuming they do not result in discontinuation,
compared with serious reactions. In a similar way, side effects
reported in social media will naturally include more common
side effects, particularly because they are impactful to the patient
taking the medication. In future work, text mining should take
advantage of these naturally occurring differences. Publications
in the biomedical literature or postings in social media,
especially early after the release of a novel drug, may include
case studies or reports of side effects not seen in clinical trials
that could be detected by our system before the signal reaches
the critical detection threshold of reporting systems such as the
FDA Adverse Event Reporting System.

Limitations
We acknowledge some limitations to this research study.
Assessing the quality of scientific journals is a difficult task but
important for narrowing the search space of candidate articles.
In this work, we attempt to combine three ranking indices in
the hope of identifying journals with the most credible
information without generating a hand-curated list. It may be
the case that our approach excludes journals that would be
extremely useful in identifying ADEs but are excluded based
on a low combined score. In addition, some journals will provide
a richer source of information on ADEs than others based on
their intended audience and subject matter irrespective of any
ranking criterion. This leaves the question of which journals to
focus on for ADE text mining open for further exploration. In
the scientific articles, as well as social media blog posts, we
noticed that different people may use different terms to discuss
a similar single adverse event. For example, the terms “mood
changes” and “mood swings” are often used interchangeably,
equally meaning “mood changes.” A robust dictionary-based
methodology may help address this issue. Additionally, text
mining of the social media comments posted by patients is a
really challenging task, as the comments are often written in an
informal way. As we have a smaller number of labeled sentences
from this source, we didn’t address overcoming the differences
in phrasing, spelling errors, or other problems introduces from
these posts. No fuzzy matching or specialized dictionaries were
used on either source, so if there are spelling errors in the drug
name, adverse event, or indication, the sentence would have
been excluded from evaluation. Furthermore, our proposed big
data neural network model is more appropriate for the
short-length text data (eg, a sentence) classification rather than
the long-length text data (eg, full text articles) categorization.
Advanced tokenization systems, and in particular, a medical
literature–based tokenization system will be useful with
short-length text data.

Conclusions
The present contribution utilized a bigNN system to discover
only ADEs; however, there are several interesting applications
to leverage the proposed system. For example, the proposed big
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data analytics pipeline could help study drug repurposing and
impact drug development, particularly in analyzing the success
rates of new medications. The social media demographic
information (eg, age, gender, ethnicity, and location) supports
use of the current contribution to explore ADEs and drug
indications discussed by different demographic groups. For
future work, we intend to further explore the application of the
proposed framework to medical informatics, and particularly

drug analyses, extending the work for social media–based ADE
discovery discussed by different demographics groups. We
would enhance the proposed framework to tackle the problem
of semisupervised learning with multiple labels, rather than
only a single label. We also plan to make a sentence-based ADE
discovery dataset and present it publicly and make it freely
available to the research community.
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