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Abstract

Background: Extracting structured data from narrated medical reports is challenged by the complexity of heterogeneous
structures and vocabularies and often requires significant manual effort. Traditional machine-based approaches lack the capability
to take user feedbacks for improving the extraction algorithm in real time.

Objective: Our goal was to provide a generic information extraction framework that can support diverse clinical reports and
enables a dynamic interaction between a human and a machine that produces highly accurate results.

Methods: A clinical information extraction system IDEAL-X has been built on top of online machine learning. It processes
one document at a time, and user interactions are recorded as feedbacks to update the learning model in real time. The updated
model is used to predict values for extraction in subsequent documents. Once prediction accuracy reaches a user-acceptable
threshold, the remaining documents may be batch processed. A customizable controlled vocabulary may be used to support
extraction.

Results: Three datasets were used for experiments based on report styles: 100 cardiac catheterization procedure reports, 100
coronary angiographic reports, and 100 integrated reports—each combines history and physical report, discharge summary,
outpatient clinic notes, outpatient clinic letter, and inpatient discharge medication report. Data extraction was performed by 3
methods: online machine learning, controlled vocabularies, and a combination of these. The system delivers results with F1 scores
greater than 95%.

Conclusions: IDEAL-X adopts a unique online machine learning–based approach combined with controlled vocabularies to
support data extraction for clinical reports. The system can quickly learn and improve, thus it is highly adaptable.

(JMIR Med Inform 2017;5(2):e12) doi: 10.2196/medinform.7235
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Introduction

While immense efforts have been made to enable structured
data model for electronic medical record (EMR), a large amount
of medical data remain in free-form narrative text, and useful
data from individual patients are usually distributed across
multiple reports of heterogeneous structures and vocabularies.
This poses major challenges to traditional information extraction
systems, as either costly training datasets or manually crafted
rules have to be prepared. These approaches also lack the
capability of taking user feedbacks, to adapt and improve the
extraction algorithm in real time.

Our goal is to provide a generic information extraction
framework that is adaptable to diverse clinical reports, enables
a dynamic interaction between a human and a machine, and
produces highly accurate results with minimal human effort.
We have developed a system, Information and Data Extraction
using Adaptive Online Learning (IDEAL-X), to support adaptive
information extraction from diverse clinical reports with
heterogeneous structures and vocabularies. The system is built
on top of online machine learning and customizable controlled
vocabularies. A demo video can be found on YouTube [1].

IDEAL-X uses online machine learning–based approach [2-4]
for information extraction. Traditional machine learning

algorithms take a two-stage approach: batch training based on
an annotated training dataset, and batch prediction for future
datasets based on the model generated from stage one (Figure
1). In contrast, online machine learning algorithms [2,3] take
an iterative approach (Figure 1). It learns one document at a
time, and predicts values to be extracted for the next one.
Learning occurs from revisions made by the user, and the
updated model is applied to prediction for subsequent
documents. Once the model achieves a satisfactory accuracy,
the remaining documents may be processed in batch. Online
machine learning not only significantly reduces human’s effort
for annotation but also provides the mechanism for collecting
feedback from human-machine interaction to improve the
system’s model continuously.

Besides online machine learning, IDEAL-X allows for
customizable controlled vocabularies to support data extraction
from clinical reports, where a vocabulary enumerates the
possible values that can be extracted for a given attribute. (The
X in IDEAL-X represents the controlled vocabulary plug-in.)
The use of online machine learning and controlled vocabularies
is not mutually exclusive; they are complementary, which
provide the user with a variety of modes for working with
IDEAL-X.

Figure 1. Online machine learning versus batch learning. (a) Batch machine learning workflow; (b) Online machine learning workflow.
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Background

Related Work
A number of research efforts have been made in different fields
of medical information extraction. Successful systems include
caTIES [5], MedEx [6], MedLEE [7], cTAKES [8], MetaMap
[9], HITEx [10], and so on. These methods either take a
rule-based approach, a traditional machine learning–based
approach, or a combination of both.

Different online learning algorithms have been studied and
developed for classification tasks [11], but their direct
application to information extraction has not been studied.
Especially in the clinical environment, the effectiveness of these
algorithms is yet to be examined. Several pioneering projects
have used learning processes that involve user interaction and

certain elements of IDEAL-X. I2E2 is an early rule-based
interactive information extraction system [12]. It is limited by
its restriction to a predefined feature set. Amilcare [13,14] is
adaptable to different domains. Each domain requires an initial
training that can be retrained on the basis of the user’s revision.

Its algorithm (LP)2 is able to generalize and induce symbolic
rules. RapTAT [15] is most similar to IDEAL-X in its goals. It
preannotates text interactively to accelerate the annotation
process. It uses a multinominal naïve Baysian algorithm for
classification but does not appear to use contextual information
beyond previously found values in its search process. This may
limit its ability to extract certain value types.

Different from online machine learning but related is active
learning [16,17], it assumes the ability to retrieve labels for the

most informative data points while involving the users in the
annotation process. DUALIST [18] allows users to select
system-populated rules for feature annotation to support
information extraction. Other example applications in health
care informatics include word sense disambiguation [19] and
phenotyping [20]. Active learning usually requires
comprehending the entire corpus in order to pick the most useful
data point. However, in a clinical environment, data arrive in a
steaming fashion over time that limits our ability to choose data
points. Hence, an online learning approach is more suitable.

IDEAL-X adopts the Hidden Markov Model for its compatibility
with online learning, and for its efficiency and scalability. We
will also describe a broader set of contextual information used
by the learning algorithm to facilitate extraction of values of all
types.

Heterogeneous Clinical Reports
A patient’s electronic medical record could come with a variety
of medical reports. Data in these reports provide critical
information that can be used to improve clinical diagnosis and
support biomedical research. For example, the Emory University
Cardiovascular Biobank [21] collects records of patients with
potential or confirmed coronary artery diseases undergoing
cardiac catheterization, and aims to combine extracted data
elements from multiple reports to identity patients for research.
Report types include history and physical report, discharge
summary, outpatient clinic note, outpatient clinic letter, coronary
angiogram report, cardiac catheterization procedure report,
echocardiogram report, inpatient report, and discharge
medication lists.

Figure 2. Example snippets of different report forms. (a) Semistructured report; (b) Template based narration; and (c) Complex narration.
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We classify clinical reports into 3 forms: semistructured data,
templatebased narration, and complex narration. Semistructured
data represent data elements in the form of attribute and value
pairs (Figure 2). Reports in this form have simple structures,
making data extraction relatively straightforward.
Template-based narration is a very common report form. The
narrative style, including sentence patterns and vocabularies,
follow consistent templates and expressions (Figure 2).
Extracting information from this type of text (eg, “right posterior
descending artery”) require major linguistics expertise, to either
formulate extraction rules or to annotate training data. Complex
narration is essentially free-form text. It can be irregular,
personal, and idiomatic (Figure 2). Most medical reporting
systems still allow for (and thus encourage) such a style. It is
the most difficult form to interpret and process by NLP
algorithms. Nevertheless, certain type of information such as
diseases and medications has finite vocabulary that could be
used to support data extraction.

Methods

Overview
The interface and workflow conform to traditional annotation
systems: a user browses an input document from the input
document collection and fills out an output form. On loading
each document, the system attempts to fill the output form
automatically with its data extraction engine. Then, a user can

review and revise incorrect answers. The system then updates
its data extraction model automatically based on the user’s
feedbacks. Optionally, the user may provide a customized
controlled vocabulary to further support data extraction and
answer normalization. Pretraining with manually annotated data
is not required, as the prediction model behind the data
extraction engine can be established incrementally through
online learning, customizing controlled vocabularies, or a
combination of the two.

The system can operate in two modes: (1) interactive: through
online learning, the system predicts values to be extracted for
each report, and the user verifies or corrects the predicted values;
and (2) batch: batch predicting for all unprocessed documents
once the accrued accuracy is sufficient for users. Whereas
interactive mode uses online machine learning to build the
learning model incrementally, batch mode runs the same as the
prediction phase of batch machine learning.

System Interface and User Operations

System Interface

IDEAL-X provides a GUI with two main panels: a menu and
navigation buttons (Figure 3). The left panel is for browsing an
input report, and the right panel is the output table with predicted
values of each data element in the report. The menu provides
options for defining the data elements to be extracted, specifying
input reports, among others.

Figure 3. An example screenshot of IDEAL-X’s interface.
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Definition of Data Elements for Extraction

The system provides a wizard for constructing the metadata of
the output form. The user builds the form by specifying a list
of data elements and their constraints. An example is the data
element “Heart Rate,” which is constrained to be a numerical
value between 0 and 200. Other constraints include sections of
the report that may contain the values. However, except for the
names of the data elements, specifying constraints are optional,
as these can be learned by the system.

Data Extraction Workflow

The user will first select a collection of input reports to be
extracted from a local folder. By default, the system runs in an
interactive mode, and one report will be loaded at a time on the
left display panel. The user can make manual annotations by
highlighting the correct value in the report text. Clicking the
corresponding data field in the table assigns the value to the
data element. If the system has prefilled the field of a data
element with a predicted value, the user can provide feedback
by fixing incorrect values. As the user navigates to the next
document, the system compares the prefilled and the final values
for the most recently processed document. Values that are
unchanged or filled in by users are taken as positive instances,
and values that have been revised are taken as negative
instances. Both instances are incorporated into the online
learning algorithm to be used by the data extraction for
subsequent documents. By iterating through this process, the
amount of information that the system is able to correctly prefill
grows over time. Note that manual revision in this context is
different from traditional human labeling. It is only necessary
if there is a wrong prediction, thus humans’ effort can be
significantly saved. Once the decision model reaches an
acceptable level of accuracy, the user has the option to switch
to batch mode to complete extraction for the remaining
documents. If a patient has multiple reports, the text input panel
displays each report with a separate tab. Data extracted from
all the reports are aggregated in the output.

Customization of Controlled Vocabularies

IDEAL-X also provides an interface for the user to customize
a controlled vocabulary that can be used by the system for data
extraction. The controlled vocabulary contains both terminology
and structural properties. The terminology includes lists of
values and their normalization mappings. For example, Disease
terminology includes “Diabetes Mellitus” with variations “DM”
and “Diabetes.” It also defines inductions. For example, taking

“Insulin” or “Metformin” indicates having Diabetes Mellitus.
Structural properties provide positive and negative contextual
information for giving terms. For example, to extract
medications taken by patients, the “Allergies” section is a
negative context and medicine names in the section will be
skipped. Structural properties may also contain disambiguation
terms that may further improve the precision of extraction. A
simple example is that “intolerant” is a negative indicator for
identifying “statin” as “statin intolerant” refers to different a
concept. Controlled vocabularies can be a powerful tool to
support data extraction: it can be used to locate sentences and
chunks of possible values, and to perform normalization for
extracted values, discussed in the next section.

The Data Extraction Engine

While the user interacts with IDEAL-X interface, the data
extraction engine works transparently in the background. The
engine has 3 major components: answer prediction, learning,
and the learning model that the online learning process
continuously updates (Figure 4). The system combines statistical
and machine learning–based approaches with controlled
vocabularies for effective data extraction.

Document Preprocessing
When a report is loaded, the text is first parsed into an
in-memory hierarchical tree consisting of 4 layers: section,
paragraph, sentence, and token. Apache OpenNLP [22] is used
to support the parsing with its Sentence Detector, Tokenizer,
and Part-of-Speech Tagger. A reverse index of tokens is created
to support efficient keywords-based search. The index is used
to find locations (eg, sections, paragraphs, sentences, and
phrases) of a token, as well as its properties such as part of
speech and data type. For example, given the token “DM,” the
system can quickly identify the section (eg, “History”) and the
containing sentences. Such token search is frequently performed
in answer prediction, and the in-memory index structures enable
high efficiency for such operations.

Answer Prediction
Predicting the value of each data element involves the following
steps: (1) Identifying target sentences that are likely to contain
the answer; (2) Identifying candidate chunks in the sentences;
(3) Filtering the chunks to generate candidate values; (4)
Ranking candidate values to generate (raw) values; (5)
Normalizing values; and (6) Aggregating values from multiple
reports. The workflow is shown in Figure 5.
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Figure 4. Overview of System Workflow.

Figure 5. Precision and recall changes over processed records.
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Identifying Target Sentences

Through online learning, the system accrues keywords from
past answers (answer keywords) along with cooccurring words
in the corresponding sentences (contextual words). For example,
given the answer keywords “diabetes” and “hypertension” in
the sentence “The patient reports history of diabetes and
hypertension,” contextual words are “patient,” “report,” and
“history.” Such answer keywords and contextual words
combined with customized vocabularies can be utilized to
identify sentences that are likely to contain answers with the
following methods:

First, similarity-based search using the vector space model [23].
Given a collection of contextual words and their frequencies,
the system computes the similarity against sentences in the
document [23]. Sentences with high similarities are selected.
For example, most sentences about “disease” contain
“diagnosis” and “history.” The past contextual keywords and
their frequency weights are represented and maintained through
a learning model discussed later in “Learning” section.

Second, answer keyword matching search. The answer
keywords, combined with relevant user customized vocabularies,
are also used to identify target sentences with keyword
matching. For example, to extract diseases, if a sentence contains
the disease term “myocardial infarction” defined in the
vocabulary, the sentence is selected as a target. In both
approaches, sections to be searched or skipped are also
considered to narrow the scope of searching.

Identifying Candidate Chunks

After target sentences are selected, the system identifies potential
phrases in the sentences using 2 methods: Hidden Markov model
(HMM) [24] and keyword-based search. The HMM represents
target words and contextual words in a sentence with different
states, and marks values to be extracted based on probability
distributions learned from previously collected values and their
sentences. The keyword-based search finds candidate chunks
using keywords collected from past answers and the controlled
vocabulary.

Filtering chunks

To filter candidate chunks, the system uses rule induction
[14,25] to generate “If-Then” rules based on historical statistics.
The following filtering criteria are used: (1) Part of speech
(POS): This filters a phrase by its POS tag in the sentence.
Simple example phrases are noun and verb phrases. (2) String
pattern: This looks for chunks that match special string patterns.
For example, the first characters of all tokens are capitalized.
(3) Value domain: This eliminates numerical or enumerated
values that fall outside a specified range of values. (4) Negation:
Based on predefined built-in rules, this removes phrases
governed by words that reverse the meaning of the answer [26].
For example, if a candidate chunk “cancer” is extracted from a
sentence “the patient has no history of cancer,” “cancer” would
not be included. (5) Certainty: Similar to negation filter, this
detects and filters uncertain events or situations such as future
plans, based on predefined rules. For example, a candidate chunk
“radiation therapy” for treatment from a sentence “the patient
is planned to take radiation therapy” should not be included.

Whereas negation and certainty filtering is based on predefined
rules, other filtering relies on real-time data statistics for filtering
criteria.

Ranking Candidate Values

The system combines the scores of the selected sentences and
chunks for ranking of candidate values. For a single-valued data
element (eg, heart beat), the candidate value with the highest
confidence score is selected. For a multi-valued data element
(eg, medication), values with confidence scores above a
threshold are selected. Based on this, each candidate value is
either accepted or rejected.

Normalizing Values

This step normalizes extracted values through transformation,
generalization, and induction rules given by the controlled
vocabulary (Figure 4). For example, “DM” is transformed into
“Diabetes Mellitus.” “Pindolol” is generalized to its hypernym
“beta blocker.” The appearance of medication term “Metformin”
(a drug for treating type 2 diabetes) in the text can infer the
disease “Diabetes Mellitus.”

Aggregating Results

Data extracted from multiple reports of a patient will be
aggregated into a single table. The aggregation process may
normalize values and remove duplicates. For example,
“lisinopril” and “captopril” are extracted from discharge
summary and inpatient report, respectively, and they can be
normalized as “ACE inhibitor.” If the same data element is
extracted from multiple reports, deduplication is performed.
The final output is in simple structural table form that can be
exported conveniently to other applications such as Excel
(Microsoft) or a database.

Note that controlled vocabularies can play important roles in
the answer prediction process. They are used for identifying
target sentences through keyword searching, identifying
candidate chunks through keyword matching, and supporting
normalization for extracted values.

Learning
IDEAL-X takes an online learning–based approach to
incrementally build statistical models and make predictions
(Figure 5). The 3 models used in IDEAL-X are all statistical
based and can be continuously updated after each iteration.

System-predicted values automatically populate the output table,
and the user advances to the next report with or without revision
to these values. In both cases, the internal learning and
prediction models of IDEAL-X are updated. For each instance,
IDEAL-X collects and analyzes the following features: (1)
Position: location of the answer in the text hierarchy; (2)
Landmark: co-occurring contextual keywords in a sentence; (3)
POS: parts of speech tag; (4) Value: the tokens of the answer;
(5) String patterns: literal features such as capitalization and
initial and special punctuation. These features are then used to
update the 3 models.

In IDEAL-X, each data element such as attribute “disease” or
“medicine,” has its own statistical model, and each new instance
of a data element will update the corresponding model. There
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are 3 models to be updated: (1) Updating Space Vector Model:
This model uses “Landmark” features of positive instances. The
system updates frequencies of cooccurring contextual words,
used as weights of the space vector [23]. (2) Updating HMM:
HMM lists all words in a sentence as a sequence, in which an
extracted value is marked as target value state and other words
are recognized as irrelevant contextual states. Based on this
sequence, the state transition probabilities and emission
probabilities are recalculated [24]. (3) Updating rule induction
model: Filtering rules are induced based on the coverage
percentage [25]. Features such as POS, value domain and string
patterns of both positive and negative instances are analyzed
and their respective coverage percentages are modified. Once
the coverage of a rule reaches a predefined threshold, the rule
is triggered for filtering.

In an interactive mode, the above 4 steps repeat for each report,
where the learning models are continuously updated and
improved.

Results

Experimental Setup

Datasets
We used 3 datasets from 100 patients that were randomly
sampled from a collection of about 5000 patients in the Emory
Biobank database. Dataset 1 is a set of semistructured reports
and contains 100 cardiac catheterization procedure reports.
Dataset 2 is a set of template-based narration and contains 100
coronary angiographic reports. Dataset 3 is a set of complex
narration and contains 315 reports, including history and
physical report, discharge summary, outpatient clinic notes,
outpatient clinic letter, and inpatient discharge medication report.

Ground Truth
The test datasets are independently hand-annotated by domain
expert annotators, including physicians, physician trainees, and
students trained by the Emory Clinical Cardiovascular Research
Institute for Biobank data reporting. Each record is annotated
by 2 different annotators. The interrater agreement scores
(kappa) of these 3 datasets are .991, .986, and .835, respectively.
An arbitrator—an independent cardiovascular disease researcher
reconciles incompatible outputs of the system and the manual
annotations to produce the final ground truth.

Evaluation Metrics
For validation, precision, recall, and F1 scores are used to
estimate the effectiveness of extraction by comparing the system
predicted results (before human revision) and the ground truth.

Experiment Settings
We aimed to evaluate the effectiveness of the system with
respect to using online learning and controlled vocabularies and

to understand their applicability to different report forms. By
analyzing the report styles and vocabularies, we discovered that
online learning will be more suitable for semistructured or
template-based narration reports, and controlled
vocabulary-guided data extraction would be more effective on
complex narration with a finite vocabulary. Thus, we designed
3 experiments: (1) Online learning–based data extraction, where
controlled vocabularies are not provided, based on Dataset 1
(semistructured) and Dataset 2 (template-based narration); (2)
Controlled vocabularies-based data extraction, where online
learning is not used, based on Dataset 3 (complex narration);
and (3) Controlled vocabularies guided data extraction combined
with online learning, based on Dataset 3.

Performance Evaluation

Experiment 1: Online machine Learning–Based Data
Extraction
This experiment was based on Datasets 1 and 2. The system
starts in an interactive mode with an empty decision model
without prior training. The defined data elements are
summarized in Multimedia Appendix 1. The user processes one
report at a time, and each system-predicted value (including
empty values for the first few reports) before user revision was
recorded for calculating precision and recall.

Results are summarized in Table 1 for the 2 datasets,
respectively. Both test cases achieved high precision as
semistructured and template-based text is most easy to handle.
To study the learning rate of online learning, we divided records
into 10 groups, and plotted precision and recall of every 10%
of the records in datasets 1 and 2. We observed that in both
tests, the system maintained high precision during the learning
process. Although some variability exists due to new data
pattern, the recall of both cases also improved steadily. Not
surprisingly, the rate of learning for dataset 1 is much faster
given its semistructure.

Experiment 2: Controlled Vocabularies-Guided Data
Extraction
In this experiment, online learning was disabled and data
extraction was performed in batches using controlled
vocabulary. Diseases and medications were extracted from
Dataset 3 (values to be extracted are shown in Multimedia
Appendix 1). Customized controlled vocabularies, including
terminology and structural properties, had been created
independently by physicians through referring to domain
knowledge resources and analyzing another development report
dataset of 100 patients, disjoint from Dataset 3. Note that
comparisons in this and the following experiments were at a
clinical finding level between system-integrated-results and
manual-annotation-integrated-results.

Table 1. Results of data extraction from semistructured reports (Dataset 1) and template-based narration (Dataset 2).

F1 (%)Recall (%)Precision (%)Number of valuesNumbers of data elementsDataset

98.196.599.81272191

95.293.297.2728162
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Table 2. Results of controlled vocabularies-guided data extraction from complex narration (Dataset 3).

F1 (%)Recall (%)Precision (%)Number of round truth valuesNumber of data elementsType of data elements

96.799.094.541815Diseases

99.299.798.643710Medications

97.999.496.585525All

The results in Table 2 show that controlled vocabularies are
highly effective for data extraction over complex narratives.
Domain-specific data, for example, cardiology-related diseases
and medications, have limited numbers of possible values (or
domain values), and a carefully customized controlled
vocabulary can achieve high extraction accuracy.

Experiment 3: Controlled Vocabularies-Guided Data
Extraction Combined With Online machine Learning
In this experiment, we performed 2 tests to examine how
efficient and effective the system learns when only terminology
is available and structural properties need to be obtained from
online learning. Test 1 was to generate the baseline for
comparison, and Test 2 was to demonstrate the effectiveness of
combining online machine learning and controlled vocabularies.
Dataset 3 was used to extract all diseases and medications.

For Test 1, terminology was used and online machine learning
is disabled, so the test was guided by controlled vocabulary
without any structural properties. We note that comprehensive
terminology contributes directly to high recall rate, which means
that the system seldom misses values to be extracted. However,

if structural properties are not included, compared with the result
in Experiment 2, the precision is much lower. This highlights
the value of positive and negative contexts in an extraction task.

For Test 2, both terminology and online machine learning were
used. Online machine learning supports learning structural
properties. To show how quickly the system learns, only the 38
reports associated with the first 10 patients were processed with
interactive online learning. All remaining reports were processed
in batch. Results in Table 3 show an overall precision of 94.9%,
which demonstrates that online learning could quickly learn
structural properties.

Typical errors in these 2 tests were associated with terminology
and contextual information used in complex narrative scenarios.
On one hand, the completeness of the terminology list, including
terms and their synonyms, influences the recall rate directly.
On the other hand, although coverage of terminologies could
be maximized by a carefully engineered vocabulary, unwanted
extractions arising from searches in the wrong section,
undetected negations, and ambiguous use of terms can still
lower the overall precision.

Table 3. Results of controlled vocabularies-guided data extraction combined with online learning.

F1 (%)Recall (%)Precision (%)Online learningControlled vocabularyTest

89.299.480.9N/ATerminology only1

97.199.494.9Applied to first 10 patientsTerminology only2

Discussion

Principal Findings
IDEAL-X provides a generic data extraction framework that
takes advantage of both online learning and controlled
vocabularies. The 2 approaches complement each other and can
also be combined. Online learning–based approach is highly
effective for reports with underlying structural patterns such as
semistructured or template-based narration style-based reports.
Experiments with complex narrative reports indicate that the
use of controlled vocabularies is highly effective for supporting
extraction constrained by finite data domain. In addition,
structural properties such as section-data associations can play
an important role in improving the accuracy of extraction.
However, in cases where controlled vocabularies
are unavailable—extracting generic named entities for example,
maintaining high accuracy is a challenge. This is an ongoing
area of exploration that we will report in the future.

Machine learning is among major techniques for identifying
candidate chunks. Besides HMM, we have also explored other
classifiers such as Naive Bayes classifier and neural
networks-based classifier. An ongoing project includes a
systematic study of different classifiers and their combinations

(including Conditional Random Field and Support Vector
Machine [27]) for online machine learning–based data
extraction.

To make it more flexible on using standard medical
terminologies for customizing controlled vocabularies, an
ongoing work is developing a tool that can easily search and
import concepts from standard vocabularies such as ICDE-9,
ICD-10, and SNOMED, from a local file or through NCBO
BioPortal.

Conclusions
Although there are natural language processing tools available
for extracting information from clinical reports, the majority
lack the capability to support interactive feedback from human
users. An interactive, online approach allows the user to coach
the system using knowledge specific to the given set of reports,
which may include local reporting conventions and structures.
Moreover, no advanced linguistics knowledge or programming
skills are required of the users; the system maintains the ordinary
workflow of manual annotation systems. We perform a
systematic study on the effectiveness of the online
learning–based method combining with controlled vocabularies
for data extraction from reports with various structural patterns,
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and conclude that our method is highly effective. The framework
is generic and the applicability is demonstrated with diverse

report types. The software will be made freely available online
[28].
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