
Original Paper

A Software Framework for Remote Patient Monitoring by Using
Multi-Agent Systems Support

Chrystinne Oliveira Fernandes*, MSc; Carlos José Pereira De Lucena*, PhD
Department of Informatics, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
*all authors contributed equally

Corresponding Author:
Chrystinne Oliveira Fernandes, MSc
Department of Informatics
Pontifical Catholic University of Rio de Janeiro (PUC-Rio)
RDC Bldg, 4th Fl
225 Marquês de São Vicente St
Rio de Janeiro, 22451-900
Brazil
Phone: 55 521 3527 1510
Fax: 55 21 3527 1530
Email: chrystinne@gmail.com

Abstract

Background: Although there have been significant advances in network, hardware, and software technologies, the health care
environment has not taken advantage of these developments to solve many of its inherent problems. Research activities in these
3 areas make it possible to apply advanced technologies to address many of these issues such as real-time monitoring of a large
number of patients, particularly where a timely response is critical.

Objective: The objective of this research was to design and develop innovative technological solutions to offer a more proactive
and reliable medical care environment. The short-term and primary goal was to construct IoT4Health, a flexible software framework
to generate a range of Internet of things (IoT) applications, containing components such as multi-agent systems that are designed
to perform Remote Patient Monitoring (RPM) activities autonomously. An investigation into its full potential to conduct such
patient monitoring activities in a more proactive way is an expected future step.

Methods: A framework methodology was selected to evaluate whether the RPM domain had the potential to generate customized
applications that could achieve the stated goal of being responsive and flexible within the RPM domain. As a proof of concept
of the software framework’s flexibility, 3 applications were developed with different implementations for each framework hot
spot to demonstrate potential. Agents4Health was selected to illustrate the instantiation process and IoT4Health’s operation. To
develop more concrete indicators of the responsiveness of the simulated care environment, an experiment was conducted while
Agents4Health was operating, to measure the number of delays incurred in monitoring the tasks performed by agents.

Results: IoT4Health’s construction can be highlighted as our contribution to the development of eHealth solutions. As a software
framework, IoT4Health offers extensibility points for the generation of applications. Applications can extend the framework in
the following ways: identification, collection, storage, recovery, visualization, monitoring, anomalies detection, resource notification,
and dynamic reconfiguration. Based on other outcomes involving observation of the resulting applications, it was noted that its
design contributed toward more proactive patient monitoring. Through these experimental systems, anomalies were detected in
real time, with agents sending notifications instantly to the health providers.

Conclusions: We conclude that the cost-benefit of the construction of a more generic and complex system instead of a
custom-made software system demonstrated the worth of the approach, making it possible to generate applications in this domain
in a more timely fashion.

(JMIR Med Inform 2017;5(1):e9) doi: 10.2196/medinform.6693

KEYWORDS

eHealth systems; remote patient monitoring; biometric sensors

JMIR Med Inform 2017 | vol. 5 | iss. 1 | e9 | p. 1http://medinform.jmir.org/2017/1/e9/
(page number not for citation purposes)

Fernandes & LucenaJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:chrystinne@gmail.com
http://dx.doi.org/10.2196/medinform.6693
http://www.w3.org/Style/XSL
http://www.renderx.com/

Introduction

Innovative Technological-Based Solutions
Technological solutions can be applied to deal better with
current operational problems involving the delivery of health
care. The application of computational tools to hospital activities
has the capacity to transform the present operational
environment through activities such as improvement of work
processes. Examples of improvements brought by the use of
innovative technological solutions are as follows:

1. Change in the way the physician-patient–relationship occurs,
because of Remote Patient Monitoring (RPM) possibilities [1]

2. Ease of information access and sharing among the medical
team and the patients’ relatives [2]

3. More mobility for patients, whose health status can be
monitored from home or work, without being restricted to
hospital facilities

4. Possibility of collaborative work between the local team and
external professionals; it allows a second opinion about patients’
diagnoses and treatments, as patient information is already in
a distributed database

5. Possibility of automatic processes such as vital patient data
collection by using sensors

6. Remote and real-time monitoring of patient health conditions

7. Alerts to health care professionals in emergency situations

8. Decrease in elapsed time for detection of anomalies in the
vital signs of monitored patients, by using software agents; in
this context, software agents consist of computational entities
that perform activities in response to emergency situations

Investments in RPM technology can provide better support for
patients from their health care team and perhaps make resources
available for other health-related activities.

Theoretical Background

Internet of Things (IoT)
IoT is a field within Computer Science that has grown quickly
in recent years. Kevin Ashton introduced the term “Internet of
Things” in 1999 [3]. One can define IoT as a global network of
smart devices that can sense and interact with their environment
for communication with users and other things (smart devices)

and systems. In this context, things could be identified solely
by using radio-frequency identification (RFID) [4] tags in order
to be connected to the Internet and publish their information.
Things are physical objects such as refrigerators, cars, walking
sticks, dog collars, and whatever object comes to mind.

Thus, using sensors, actuators, and RFID-like technology,
objects in the environment could be viewed, identified, and
controlled more autonomously. In this case, things themselves
could specify when they needed to be replaced, fixed, or report
if they could provide data [3].

IoT Technologies: RFID, Microcontrollers, and Sensors
To develop the IoT patient-monitoring application described in
this paper, 3 main IoT technologies have been used: RFID,
micro-controllers, and sensors.

RFID is an automatic identification method that utilizes radio
signals, recovering and storing data remotely through devices
called RFID tags. These devices are used for identification,
sensing, and communication [5].

Arduino [6] microcontrollers, which are open source platforms
for electronic prototyping, are also used: Uno R3 [7] and Yún
[8] models (Figure 1). Microcontrollers can be programmed to
process inputs and outputs of connected external components
(Figure 1). One can use embedded computing to allow the
construction of systems that interact with the environment using
hardware and software [9].

A variety of sensors can be used to collect data for IoT
applications such as temperature, humidity, light level, oxygen
level, and sensor presence, among others.

In eHealth, it is common for some devices to contain a number
of sensors linked together, such as in the HealthPatch MD [10]
Vital Connect health-monitoring sensor (Figure 2). The sensor
is a small adhesive patch with a module that measures heart
rate, breathing frequency, body temperature, posture, detection
of falls, and also has Internet connectivity. Another example is
the eHealth Sensor Platform Complete Kit [11]. It contains an
eHealth Sensor Shield compatible with Arduino and Raspberry
Pi [12] microcontrollers (Figure 2), plus 10 sensors to collect
biometric data (Figure 2): pulse, oxygen levels in blood, airflow
(breathing), body temperature, electrocardiogram (ECG),
glucometer, galvanic skin response, blood pressure, patient
position (accelerometer), and muscle or electromyography
sensor (EMG).

JMIR Med Inform 2017 | vol. 5 | iss. 1 | e9 | p. 2http://medinform.jmir.org/2017/1/e9/
(page number not for citation purposes)

Fernandes & LucenaJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 1. Arduino micro-controllers, Uno R3 (on the left) and Yún (on the right) models.

Figure 2. HealthPatch MD (on the left), e-Health Sensors Shield and e-Health Sensor Platform Complete Kit (on the right).

Software Agents
A software agent [13] is an element of a computational system
that is situated in an environment where it can perform
autonomous actions in order to reach its assigned goals. An
agent is both autonomous and capable of learning from its
experience. Autonomy has been acknowledged as a key
characteristic of an agent in satisfying its goals [14]. In this
context, autonomy means operating without the intervention of
humans or other systems, although the set of possible actions
should be previously defined.

Although agents control their behavior and internal states, they
do not have full control of the environment in which they
operate. Agents contain a set of actions that can carry out tasks,
the execution of which can result in changes in the
environments. For this reason, one can consider that an agent
can have partial control and influence over its environment
depending on the action performed [15].

In general, the use of software agents is justified by the fact that
asynchronous software systems require autonomous operation,
a general argument that can be applied to our solution.

General Concepts About Software Frameworks
Frameworks are tools used to generate applications related to
a specific domain; that is, to cope with a family of related
problems [16]. The choice of using existing frameworks or
developing new application generators is based on whether the
framework can offer design and code reuse. Thus, frameworks
can usually increase software development productivity and
shorter time-to-market, compared with traditional approaches.

Frameworks contain fixed and flexible points known as frozen
spots and hot spots, respectively. Hot spots are extension points
that allow developers to create a new application from the
framework instantiation process. In this case, developers should
create specific application code for each hot spot, through the
implementation of abstract classes and methods defined in the
framework. Frozen spots consist of the framework’s kernel,
corresponding to its fixed parts, previously implemented and
hard to change. A frozen spot calls one or more of the
application’s hot spots and is present in each framework’s
instance [16].

Creating a new instance of a framework consists of 3 main steps:
(1) Domain analysis, (2) Design, and (3) Instantiation. The
domain analysis step includes requirements elicitation including
definitions of hot and frozen spots. The design step is
responsible for specifying the hot and frozen spots through a
modeling language such as UML [17] diagrams. Design patterns
[18] are also used in this phase. The instantiation phase
corresponds to the application generation phase through hot
spot implementation [16].

Related Work
Our proposal takes a similar approach to that in [19]. This paper
shows the implementation of a distributed information
infrastructure that uses the intelligent agent paradigm for: (1)
automatically notifying the patient’s medical team regarding
the abnormalities in his or her health status; (2) offering medical
advice from a distance; and (3) enabling continuous monitoring
of a patient’s health status. In addition, the authors have
promoted the adoption of ubiquitous computing systems [20]
and apps that allow immediate analysis of a patient’s
physiological data such as a personalized feedback of their

JMIR Med Inform 2017 | vol. 5 | iss. 1 | e9 | p. 3http://medinform.jmir.org/2017/1/e9/
(page number not for citation purposes)

Fernandes & LucenaJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

condition in real time, by using an alarm-and-remember
mechanism. In this solution, patients can be evaluated,
diagnosed, and cared for through a mode that is both remote
and ubiquitous. In the case of rapid deterioration of a patient’s
condition, the system automatically notifies the medical team
through voice calls or SMS messages, providing a first-level
medical response. This proposal differs from ours, in that the
resulting application is closed, as opposed to our broader eHealth
application generator.

The approach in [21] focuses on design and development of a
distributed information system based on mobile agents to allow
automatic and real-time fetal monitoring. Devices such as a
PDA, mobile phone, laptop, and personal computer are used to
capture and display the monitored data.

In [22], mobile health apps are proposed as solutions for (1)
overcoming personalized health service barriers; (2) providing
opportune access to critical information on a patient’s health
status; (3) avoiding duplication of exams, delays and errors in
patient treatment.

Methods

Main Research Goals
Our main research goal is to demonstrate that the formulation
of a software framework to generate IoT applications in the
eHealth domain does effectively support RPM. The aim is to
analyze the tradeoffs involved in the challenge of building a
flexible and powerful tool to help deal with the constraints found
in a medical care environment. This initial version is totally
experimental; it has not been tested in real medical care
environments. Regarding the long-term goals of the research,
the aim is to apply this software framework in a real medical
care environment to assess its effective use as well as adequacy
in terms of regulatory approval.

Methodology
We decided to build an IoT framework to allow the
characterization of the RPM domain by using framework design
techniques that encompass software agents. Framework
methodology was chosen to assess its suitability for the RPM
domain and its potential to generate customized applications
that achieve the stated goals of more closely connecting patients
to their health care team. As a proof of the concept, 3
applications were developed with different implementations for
each hot spot of the framework.

An application named, Agents4Health was selected to illustrate
the instantiation process and the IoT4Health framework
operation. Furthermore, IoT devices were built from scratch to
collect patient data for the Agents4Health application by using
hardware prototypes comprised of biometric sensors and
Internet-enabled microcontrollers to send the sensed data to the
cloud automatically.

To measure the ability of the tool to respond proactively to
adverse conditions such as anomalies in patients’ vital signs,
and its capacity to notify health providers in real time, the
following step-by-step experiment was conducted:

1. Five measurement points were identified in the
Agents4Health’s workflow related to the tasks performed by
agents and were labeled as Timestamps (T1 through T5) as
follows:

T1. The Agents4Health application retrieves the patient data
from the cloud and the monitoring agent analyses them,
searching for anomalies. If no anomaly is detected, the system
remains in a loop collecting more data until an anomaly is found.
Once an anomaly is detected the application continues to T2

T2. This second step is reached when the monitoring agent
detects an anomaly and then calls the notification agent.

T3. The notification agent initiates the routine to notify the
health care providers;

T4. The notification agent sends information about the detected
anomaly to the patient’s health care providers;

T5. The health care providers receive the notification message
on their mobile phones.

2. Agents4Health is executed and the timestamps are measured
and registered.

3. Four delays defined as follows are captured for the different
agent’s execution tasks:

Detection anomaly interval (DAI)=T2−T1. The anomaly's
detection delay in the monitoring routine.

Notification start interval (NSI)=T3−T2. The delay between the
anomaly detection and the initiation of the notification routine.

Notification period (NP)=T4−T3. Duration of the notification
routine by agents.

Notification routine interval (NRI)=T5−T4. Time elapsed
between the sending of the notification and its receipt by the
health provider.

These delays were calculated to serve as a concrete measure of
how quickly and proactively the solution can respond to the
environment, as well as to support the assertion that this system
performs anomaly detection in real time.

To confirm the fulfillment of the main research goal, the
experiment described above was conducted and the relevant
results have been tabulated in the Discussion section.

Results

IoT4Health Framework

Domain Analysis
In this step, problems that health professionals currently deal
with in their patient monitoring routines are considered. As
mentioned earlier in this paper, the decision was made to build
a software framework instead of one or more apps. The choice
to use framework design techniques was motivated by the fact
that the construction of a more generic and complex system
would provide a cost-benefit, in that frameworks can usually
increase software development productivity and shorter
time-to-market.

JMIR Med Inform 2017 | vol. 5 | iss. 1 | e9 | p. 4http://medinform.jmir.org/2017/1/e9/
(page number not for citation purposes)

Fernandes & LucenaJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

IoT4Health Design
Regarding the IoT4Health’s design, besides the hot and frozen
spots that were modeled as UML diagrams, the following
architecture was defined.

IoT4Health Architecture
The IoT4Health’s architecture is structured in 3 layers, each
with well-defined functionality (Figure 3).

Figure 3. The IoT4Health’s architecture with its three layers (L1-L3). Data Management Layer (L3) and Distribution Data Layer (L1) interact through
the Data Communication Layer (L2). The IoT4Health’s frozen spots can be extended by hot spots.

Figure 4. The Agents4Health’s architecture with its three layers (L1-L3). The Agents4Health application (L3) interacts with Parse (L1) through REST
API (L2).

L1: Data Distribution Layer
This layer works as a remote database of a patient’s vital signs.

L2: Data Communication Layer
Through this layer, the L3 can communicate with the L1 layer’s
remote database.

L3: Data Management Layer
The L3 Layer is responsible for the entire information
management of the instantiated applications. It is composed of
10 modules with well-defined responsibilities. These modules
are shown next, along with a description of their purpose and

examples of how our framework can be extended by specific
application code implemented in IoT4Health’s instances.

Identification Module (M1)

It should be implemented by IoT4Health’s instances to support
the patient identification process. The IoT4Health’s architecture
offers the possibility of customizing this process, allowing
developers to use different strategies, including: (1) The use of
a unique identification code, such as the patient’s ID Card; (2)
utilization of RFID tags that can be inserted into objects like
bracelets, cards, or other elements with radio-frequency
identification capability; and (3) Biometry.

JMIR Med Inform 2017 | vol. 5 | iss. 1 | e9 | p. 5http://medinform.jmir.org/2017/1/e9/
(page number not for citation purposes)

Fernandes & LucenaJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Collection Module (M2)

It provides the collection of both patient and his or her
environment data. The collection process can be realized
manually or automatically.

Storage Module (M3)

Its implementation lets the application store the vital collected
data. Examples of storage strategies that can be developed as
an extension of IoT4Health’s architecture are (1) Local storage,
(2) Cached storage, and (3) Remote storage.

Visualization Module (M4)

It was designed to provide users with ways to visualize storage
data. Developers can implement some visualization strategies,
utilizing the Web or a mobile application.

Recovery Module (M5)

It is responsible for recovering patient data stored on the
cloud-based platform.

Monitoring Module (M6)

It was designed to continuously monitor the sensed data through
software agents. Agents evaluate if the sensed data are within
normal ranges, thus monitoring them to find anomalous values
(AV). These normal ranges are defined for each patient,
accounting for age, gender, other individual patient conditions,
and each sensor in use. The system has a mandatory
configuration step for each patient that can easily be completed
by an administrator filling out a form through a system interface.
In this step, the following parameters are defined:

1. Desired value range (DVR): They are the normal values
collected from sensors; that is, values within an acceptable limit.
They can correspond to an interval such as 36.0-36.6 for body
temperature, for example. They should be defined for each
sensor in use.

2. AVs: They are values outside the DVR, which are associated
with anomalies. Regarding the DVRs from the previous
example, one could have 37.8 as an example for a temperature
AV.

3. Label of Anomaly: They are associated with the AVs and
must also be defined for each sensor. Regarding data like
temperature, it can be associated with the following anomalies:
(1) Hyperthermia, for example, can be the label specified for
anomalies associated with AVs higher than 36.6; (2)
Hypothermia, to AVs lower than 36.0.

As one can observe, each such anomaly will receive a
meaningful label regarding the health care context, so that it
makes sense to a domain specialist. The goal is to enable a
health care provider to identify quickly what problem is
occurring when the system has detected an anomaly.

Anomalies Detection Module (M7)

It is supported by the use of reactive agents. This entity triggers
alerts to health providers when case anomalies are detected.

Notification Module (M8)

It offers the possibility of using different strategies to send alerts
to the medical team, such as by short message service (SMS),

email message, voice call, or by Bluetooth. This module also
requires the configuration of some parameters, as follows:

1. Health provider responsible for an anomaly: a health
professional should be selected to deal with each anomaly
described.

2. Notification details: The type of message for each health care
provider indicated previously should be specified (ie, SMS,
email, voice call, or Bluetooth), along with the details such as
email address or phone number.

This module’s result is the communication process between
agents. Agents that monitor patient data send a message to
agents that send notifications when they detect an abnormality
in the patient’s condition, based on the predefined anomaly
settings already mentioned.

Resource Negotiation Module (M9)

It utilizes the concept of cognitive agents that, in this context,
would be responsible for the use of argumentation techniques
[23] to achieve resource sharing in a collaborative way, by
making its management more effective. An application could
implement cognitive agents, responsible for adopting negotiation
strategies, to obtain hospital resources for a particular patient.

Dynamic Reconfiguration Module (M10)

Its goal is to provide applications with context-sensitive
capability so that these systems could be capable of responding
to changes in the environment. A change of a patient’s room
could affect the defined parameters for monitoring, anomaly
detection, and notification modules, becoming inappropriate in
the new context. In this case, the applications’ values must be
reconfigured. This reconfiguration can be carried out manually
by an administrator user or autonomously by cognitive agents.

Frozen Spots and Hot Spots
The IoT4Health contains 11 hot spots, offering developers the
opportunity to create customized applications. Each one of these
modules has extension points that broaden our framework’s
architecture, as shown above in Figure 3.

The Application Agents4Health as an
Illustrative Instantiation of IoT4Health

The Agents4Health application [1] is an example of the
IoT4Health’s instantiation process, which was developed to
illustrate the generative power of our framework Figure 4. It
consists of a multi-agent system that autonomously conducts
monitoring and notifying tasks. To access the patient data sensed
by real biometric sensors and remotely stored through Arduino,
the Agents4Health communicates with the cloud via REST
application programming interface (API).

The Arduino integrated development environment (IDE) was
used to implement the M2 and M3 modules of the
Agents4Health in the C++ language. The other modules were
created with the Java language. The software agents were
programmed with the version 4.3.0 of the JADE tool [24]. JADE
is a free software distributed by Telecom Italia (the copyright
holder), in open source under the terms and conditions of the

JMIR Med Inform 2017 | vol. 5 | iss. 1 | e9 | p. 6http://medinform.jmir.org/2017/1/e9/
(page number not for citation purposes)

Fernandes & LucenaJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

second version of the Lesser General Public License (LGPL)
license. It is a framework to develop agent systems in Java. It
simplifies multi-agent systems’ implementation through
Foundation for Intelligent, Physical Agents (FIPA)-compliant
middleware [25]. The JADE API offers 2 types of behavior
classes that can be extended by agents: Primitive and Composite.
The Agents4Health agents’ behavior was implemented using
the Primitive behavior class. Each application agent is an
extension of the Agent Class and has a corresponding behavior
to Behavior’s extension class. The behavior of each of the
system’s agents is defined by its setup method, where behavior
was configured through the addBehavior method.

The Agents4Health application’s reactive agents present 2 types
of behavior: TickerBehavior and OneShotBehavior.
TickerBehavior type behavior is executed cyclically. That is,
agents in our scenario that must carry out continuous monitoring
activities implement this behavior, as is the case of
MonitoringSensorTemperatureDataAgent class. Other agents
are responsible for executing tasks that are not realized in a
predefined interval of time, occurring only on demand in
response to a specific event. This is the case of
NotificationBySMSAgent, which sends messages to the medical
team.

The Agents4Health Instance

L1: Data Distribution Layer
To provide the data distribution service to the application, a
remote data storage service called Parse [26] was utilized.

However, because the Parse hosted service will be retired in
early 2017, we are moving our database to another platform
called MongoDB [27].

L2: Data Communication Layer
The Agents4Health communicates with Parse (L1) through the
REST API [28]. The application sends and retrieves data to and
from the cloud through HTTP requests.

L3: Data Management Layer
The data management layer comprises the IoT application, with
its 8 modules (M1-M8) as follows:

M1

To identify a patient in the application, an RFID strategy has
been chosen. We have used an RFID system that includes a tag
and a reader. This process is performed through an RFID
interface, where each patient receives a bracelet containing an
RFID tag that will be used as a unique ID code in the system.

M2

In the Agents4Health application, both pulse and body
temperatures are collected. This module may be extended to
collect other patient data such as electroencephalography (EEG),
EMG, as well as environment data such as light, noise levels,
and data about the device such as battery status. This process,
which is also called sensing, is performed automatically in
Agents4Health. Arduino is used, together with sensors for
heartbeat and temperature that form an IoT device capable of
collecting patient data without human intervention (Figure 5).

JMIR Med Inform 2017 | vol. 5 | iss. 1 | e9 | p. 7http://medinform.jmir.org/2017/1/e9/
(page number not for citation purposes)

Fernandes & LucenaJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 5. Our IoT device for patient monitoring that contains an Arduino microcontroller and biometric sensors (on the left), Pulse and Oxygen in
Blood Sensor (SPO2) sensors and Body Temperature sensor (on the right).

M3

Once collected, the application transfers the patient’s data over
the Internet to the Parse.

M4

The remote storage allows any authorized user to access the
data by means of a user-friendly interface [1], through any
device (computer, mobile phone, or tablet).

M5

A Web application is provided to support the visualization of
the patient data. In the current implementation, there is a line
chart for each one of the sensors used and they are updated in
real time (Figure 6).

JMIR Med Inform 2017 | vol. 5 | iss. 1 | e9 | p. 8http://medinform.jmir.org/2017/1/e9/
(page number not for citation purposes)

Fernandes & LucenaJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 6. Example of the visualization module (on the left). Example of an action taken by the NotificationBySMSAgent agent (on the right).

M6

Following the IoT4Health’s protocol, in this step, an
administrative user defines the DVR and the AV for each sensor.

M7

During this phase, a specific label for each anomaly is defined
for each of the sensors: heartrate sensor (Table 1) and
temperature sensor (Table 2).

Table 1. Configuring an example for the anomaly detection module, considering cardiac heartbeat.

Kinds of associated types of anomaliesAVa for cardiac heartbeat

Bradyarrhythmias such as sinus bradycardia or atrioventricular blockHeartbeat values <60

Tachyarrhythmias such as atrial fibrillation, supraventricular tachycardia, and ventricular tachycardiaHeartbeat values >110

aAV: anomalous value.

Table 2. Configuring an example for the anomaly detection module considering temperature.

Kinds of associated types of anomaliesAVa for temperature

HypothermiaTemperature values <36

HyperthermiaTemperature values >36.6

aAV: anomalous value.

In Agents4Health, the criteria used by the reactive agents to
detect anomalies are defined by the domain specialists and coded
in the XML language. They will form the agents’ knowledge
bases (Figure 7).

To prevent the system from detecting false abnormalities and
triggering false alarms caused by simple patient movements or
exercising, 2 strategies are being developed: (1) filtering the
sensed data by using information provided by its own sensors
related to the signal quality; (2) adding the environment’s
sensors to collect information about the context of the
measurement. The former is performed when the sensors in use
provide information about signal quality. Sensors such as the
Mindwave Mobile Headset (NeuroSky) [29] are used to collect
EEG data to provide this type of information. In this particular
case, if the sensor is not in contact with the skin or if there is

some interference such as a strand of hair between the sensor
and the skin, the signal quality will indicate this situation. In
that case, the application can be configured to ignore the sensed
data until the signal quality provides a reliable value. The latter
is useful to make the AVs flexible, taking into consideration
the context of the patient being monitored. To avoid mistakenly
detecting a heartbeat anomaly, for example, when a patient is
engaged in physical activity, we can use sensors such as an
accelerometer to collect context information.

M8: For Agents4Health, the choice was to send SMSs as a
notification strategy, using the Twilio [30] library. Twilio is a
platform using API communication that offers Web-service
APIs, allowing users to construct their own SMS communication
applications.

JMIR Med Inform 2017 | vol. 5 | iss. 1 | e9 | p. 9http://medinform.jmir.org/2017/1/e9/
(page number not for citation purposes)

Fernandes & LucenaJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 7. XML document that constitutes the agents’ knowledge base.

Discussion

Conclusions and Future Work
The main objective of this paper was to report on the
construction of the IoT4Health framework based on a
requirements analysis of the RPM domain. This was
accomplished by using framework design techniques and the
introduction of software agents in the framework design to allow
autonomic behavior [31]. To deal with the aforementioned goal,
experiments for the IoT4Health framework were created and
tried.

In a main application experiment, generating a complete instance
of the framework validated IoT4Health. This experiment, called
Agents4Health, made it possible to observe that its design
contributed toward making the patient’s environment more
proactive. Through this experimental system, it has also been
possible to detect anomalies in real time and to send alerts
instantly and autonomously to health providers. Thereby,
professionals responsible for taking action in the case of
abnormalities in a patient’s condition can immediately react to
these events.

As mentioned in the Methods section, Table 3 offers the results
of the experiment conducted to offer a more concrete way to
indicate the performance of the simulated environment:

Table 3. Examples of timestamps for agents’ behavior and task delays.

NPc

(s)
NSIb

(s)
DAIa

(s)

Timestamp T5Timestamp T4Timestamp T3Timestamp T2Timestamp T1

1032016-11-04-17342016-11-04-1734282016-11-04-1734272016-11-04-1734272016-11-04-173424

2042016-11-04-17352016-11-04-1734362016-11-04-1734342016-11-04-1734342016-11-04-173430

3032016-11-04-17352016-11-04-1734482016-11-04-1734452016-11-04-1734452016-11-04-173442

1042016-11-04-17352016-11-04-1734552016-11-04-1734542016-11-04-1734542016-11-04-173450

1032016-11-04-17352016-11-04-1735022016-11-04-1735012016-11-04-1735012016-11-04-173458

2032016-11-04-17352016-11-04-1735092016-11-04-1735072016-11-04-1735072016-11-04-173504

aDAI: detection anomaly interval.
bNSI: notification start interval.
cNP: notification period.

On average, the DAI for the Agents4Health experiment results
is 3.5 s. The NSI presented zero delays for all results in this
experiment. The NP averaged 1.75 s. And, finally, as mobile
phones do not provide the SMS reception time with millisecond

precision, there is only an approximate measurement for NRI,
which was less than 1 min on average.

We have been involved in a number of practical developments
based on our framework. One consists of the use of Bluetooth

JMIR Med Inform 2017 | vol. 5 | iss. 1 | e9 | p. 10http://medinform.jmir.org/2017/1/e9/
(page number not for citation purposes)

Fernandes & LucenaJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

for communication with the medical team in the absence of
Internet access. The use of machine learning is also examined
in the patient monitoring domain. This approach is performed
by creating melanoma and mammography classifications as a
black box accessible to the system agents. IoT4Health is also
being used as the basis of a complex patient monitoring system
under development in our laboratory [32], with our participation
and which has been named portable care.

As future work, we are planning a rigorous formal
characterization of the patient monitoring domain as well as the
formal characterization of the family of applications reachable
through the framework flexible points. The application of
cognitive agents as elements of the software framework is also
being considered.

Acknowledgments
This work was supported by grants from National Counsel of Technological and Scientific Development (CNPq).

Conflicts of Interest
None declared.

References

1. Fernandes CO, Lucena CJP. An Internet of Things Application with an Accessible Interface for Remote Monitoring Patients.
In: Design, User Experience, and Usability: Interactive Experience Design. Springer International Publishing Switzerland:
Springer International Publishing; 2015 Jul 06 Presented at: HCI International 2015; August 2-7, 2015; Los Angeles, CA,
USA p. 651-661 URL: http://doi.org/10.1007/978-3-319-20889-3_60 [doi: 10.1007/978-3-319-20889-3_60]

2. Fernandes CO. Enabling a Smart and Distributed Communication Infrastructure in Healthcare. In: Lucena CJP, Lucena
CAP, Azevedo BA, editors. Innovation in Medicine and Healthcare 2015. Springer International Publishing Switzerland:
Springer International Publishing; Aug 12, 2015:435-446.

3. RFIDjournal. 2009. That 'Internet of Things' Thing - In the real world, things matter more than ideas URL: http://www.
rfidjournal.com/articles/view?4986 [accessed 2016-08-22] [WebCite Cache ID 6jxDkcPuS]

4. Finkenzeller D, Cox MK. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency
Identification and Near-Field Communication. Third edition. Hoboken, US: Wiley; Jun 14, 2010.

5. Atzori L, Iera A, Morabito G. The Internet of Things: a survey. Computer Networks 2010 Oct;54(15):2787-2805. [doi:
10.1016/j.comnet.2010.05.010]

6. Arduino. URL: https://www.arduino.cc/ [accessed 2016-08-21] [WebCite Cache ID 6jwDCGjRi]
7. Arduino. Arduino UNO & Genuino UNO URL: https://www.arduino.cc/en/Main/ArduinoBoardUno [accessed 2016-10-22]

[WebCite Cache ID 6lSEHmYSS]
8. Arduino. Arduino Yún Shield (USA Only) & Genuino Yún Shield (Outside USA) URL: https://www.arduino.cc/en/Main/

ArduinoYunShield [accessed 2016-10-22] [WebCite Cache ID 6lSEaH2wB]
9. Doukas C. Building Internet of Things with the Arduino (Volume 1). USA: CreateSpace Independent Publishing Platform;

2012.
10. Engadget. 2015. HealthPatch MD alerts your doctor about heart problems in real time URL: https://www.engadget.com/

2015/01/06/healthpatch-md-vital-connect/ [accessed 2016-08-22] [WebCite Cache ID 6jxH7bcek]
11. Cooking-hacks. e-Health Sensor Platform V2.0 for Arduino and Raspberry Pi [Biometric / Medical Applications] URL:

https://www.cooking-hacks.com/documentation/tutorials/ehealth-biometric-sensor-platform-arduino-raspberry-pi-medical
[accessed 2016-08-22] [WebCite Cache ID 6jxCIvFSO]

12. Raspberrypi. URL: https://www.raspberrypi.org/ [accessed 2016-08-22] [WebCite Cache ID 6jxI7NEyb]
13. Wooldridge M. Intelligent Agents. In: Multi-agent Systems. Cambridge, MA: The MIT Press; 1999.
14. Wooldridge MJ. An introduction to multiagent systems. Chichester, UK: John Wiley & Sons; 2009.
15. Russell SJ, Norvig P. Artificial intelligence: a modern approach. Upper Saddle River, NJ: Prentice Hall; 2010.
16. Markiewicz M, de Lucena CJ. Object oriented framework development. Crossroads 2001 Jul 01;7(4):3-9. [doi:

10.1145/372765.372771]
17. UML. What is UML URL: http://www.uml.org/ [accessed 2016-08-22] [WebCite Cache ID 6jxJ32ugU]
18. Gamma E, Helm R, Johnson R, Vlissides J. Design patterns: elements of reusable object-oriented software. Boston, MA:

Addison-Wesley; 1995.
19. Su CJ, Wu C. JADE implemented mobile multi-agent based, distributed information platform for pervasive health care

monitoring. Appl Soft Comput 2011 Jan;11(1):315-325. [doi: 10.1016/j.asoc.2009.11.022]
20. Weiser M. Some computer science issues in ubiquitous computing. Commun ACM 1993;36(7):75-84. [doi:

10.1145/159544.159617]
21. Su CJ, Chu TW. A mobile multi-agent information system for ubiquitous fetal monitoring. Int J Environ Res Public Health

2014 Jan 02;11(1):600-625 [FREE Full text] [doi: 10.3390/ijerph110100600]
22. Mohammadzadeh N, Safdari R. Patient monitoring in mobile health: opportunities and challenges. Med Arch 2014;68(1):57-60

[FREE Full text] [Medline: 24783916]

JMIR Med Inform 2017 | vol. 5 | iss. 1 | e9 | p. 11http://medinform.jmir.org/2017/1/e9/
(page number not for citation purposes)

Fernandes & LucenaJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://doi.org/10.1007/978-3-319-20889-3_60
http://dx.doi.org/10.1007/978-3-319-20889-3_60
http://www.rfidjournal.com/articles/view?4986
http://www.rfidjournal.com/articles/view?4986
http://www.webcitation.org/

 6jxDkcPuS
http://dx.doi.org/10.1016/j.comnet.2010.05.010
https://www.arduino.cc/
http://www.webcitation.org/

 6jwDCGjRi
https://www.arduino.cc/en/Main/ArduinoBoardUno
http://www.webcitation.org/

 6lSEHmYSS
https://www.arduino.cc/en/Main/ArduinoYunShield
https://www.arduino.cc/en/Main/ArduinoYunShield
http://www.webcitation.org/

 6lSEaH2wB
https://www.engadget.com/2015/01/06/healthpatch-md-vital-connect/
https://www.engadget.com/2015/01/06/healthpatch-md-vital-connect/
http://www.webcitation.org/

 6jxH7bcek
https://www.cooking-hacks.com/documentation/tutorials/ehealth-biometric-sensor-platform-arduino-raspberry-pi-medical
http://www.webcitation.org/

 6jxCIvFSO
https://www.raspberrypi.org/
http://www.webcitation.org/

 6jxI7NEyb
http://dx.doi.org/10.1145/372765.372771
http://www.uml.org/
http://www.webcitation.org/

 6jxJ32ugU
http://dx.doi.org/10.1016/j.asoc.2009.11.022
http://dx.doi.org/10.1145/159544.159617
http://www.mdpi.com/1660-4601/11/1/600/htm
http://dx.doi.org/10.3390/ijerph110100600
http://europepmc.org/abstract/MED/24783916
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24783916&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

23. Laera L, Blacoe I, Tamma V, Payne T, Euzenat J, Bench-Capon T. Argumentation over ontology correspondences in MAS.
2007 May 14 Presented at: Aamas Conference 2007; May 14 - 18, 2007; Honolulu, Hawaii p. 228. [doi:
10.1145/1329125.1329400]

24. Jade.tilab. JAVA Agent DEvelopment Framework: an open source platform for peer-to-peer agent based applications URL:
http://jade.tilab.com/ [accessed 2016-08-21] [WebCite Cache ID 6jwCwVQvX]

25. FIPA. FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS URL: http://www.fipa.org/docs/wps/f-wp-00018/
f-wp-00018.html [accessed 2016-08-22] [WebCite Cache ID 6jxCpiSP5]

26. Parse. Open Source Hub URL: http://parse.com/ [accessed 2016-08-21] [WebCite Cache ID 6jwBcbFYW]
27. Mongodb. MongoDB Atlas: Hosted MongoDB-as-a-Service URL: https://www.mongodb.com/ [accessed 2016-11-04]

[WebCite Cache ID 6ll1mFYUV]
28. Parseplatform.github. Parse URL: http://parseplatform.github.io/docs/rest/guide/ [accessed 2016-08-22] [WebCite Cache

ID 6jxLgHHwW]
29. Neurosky. URL: http://neurosky.com/biosensors/eeg-sensor/biosensors/ [accessed 2016-11-04] [WebCite Cache ID

6lm37mphP]
30. Twilio. URL: https://www.twilio.com/ [accessed 2016-08-21] [WebCite Cache ID 6jwCh91Vd]
31. Nunes IO, Kulesza U, Nunes C, Cirilo E, Lucena C. Extending web-based applications to incorporate autonomous behavior.

New York, NY, USA: ACM; 2008 Presented at: 14th Brazilian Symposium on Multimedia and the Web (WebMedia '08);
October 26 - 29, 2008; Vila Velha, Brazil p. 115-122 URL: http://dl.acm.org/citation.cfm?doid=1666091.1666112 [doi:
10.1145/1666091.1666112]

32. LES. 2016. URL: http://www.les.inf.puc-rio.br/wiki/index.php/P%C3%A1gina_principal [accessed 2016-08-22] [WebCite
Cache ID 6jxZarAkW]

Abbreviations
API: Application Programming Interface
AV: anomalous values
DAI: detection anomaly interval
DVR: desired value range
ECG: electrocardiography
EEG: electroencephalography
EMG: electromyography
FIPA: Foundation for Intelligent Physical Agents
HTTP: Hypertext Transfer Protocol
IDE: integrated development environment
IoT: Internet of Things
JADE: Java Agent Development Framework
NP: notification period
NRI: notification routine interval
NSI: notification start interval
RFID: radio-frequency identification
SMS: short message service
UML: Unified Modeling Language
XML: eXtensible Markup Language

Edited by G Eysenbach; submitted 24.09.16; peer-reviewed by D Cowan, M Drobics, J Rawstorn, C Matava, V Gay; comments to
author 17.10.16; revised version received 16.11.16; accepted 29.01.17; published 27.03.17

Please cite as:
Fernandes CO, Lucena CJPD
A Software Framework for Remote Patient Monitoring by Using Multi-Agent Systems Support
JMIR Med Inform 2017;5(1):e9
URL: http://medinform.jmir.org/2017/1/e9/
doi: 10.2196/medinform.6693
PMID: 28347973

©Chrystinne Oliveira Fernandes, Carlos José Pereira De Lucena. Originally published in JMIR Medical Informatics
(http://medinform.jmir.org), 27.03.2017. This is an open-access article distributed under the terms of the Creative Commons

JMIR Med Inform 2017 | vol. 5 | iss. 1 | e9 | p. 12http://medinform.jmir.org/2017/1/e9/
(page number not for citation purposes)

Fernandes & LucenaJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.1145/1329125.1329400
http://jade.tilab.com/
http://www.webcitation.org/

 6jwCwVQvX
http://www.fipa.org/docs/wps/f-wp-00018/f-wp-00018.html
http://www.fipa.org/docs/wps/f-wp-00018/f-wp-00018.html
http://www.webcitation.org/

 6jxCpiSP5
http://parse.com/
http://www.webcitation.org/

 6jwBcbFYW
https://www.mongodb.com/
http://www.webcitation.org/

 6ll1mFYUV
http://parseplatform.github.io/docs/rest/guide/
http://www.webcitation.org/

 6jxLgHHwW
http://www.webcitation.org/

 6jxLgHHwW
http://neurosky.com/biosensors/eeg-sensor/biosensors/
http://www.webcitation.org/

 6lm37mphP
http://www.webcitation.org/

 6lm37mphP
https://www.twilio.com/
http://www.webcitation.org/

 6jwCh91Vd
http://dl.acm.org/citation.cfm?doid=1666091.1666112
http://dx.doi.org/10.1145/1666091.1666112
http://www.les.inf.puc-rio.br/wiki/index.php/P%C3%A1gina_principal
http://www.webcitation.org/

 6jxZarAkW
http://www.webcitation.org/

 6jxZarAkW
http://medinform.jmir.org/2017/1/e9/
http://dx.doi.org/10.2196/medinform.6693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28347973&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

Attribution License (http://creativecommons.org/licenses/by/2.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete
bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license
information must be included.

JMIR Med Inform 2017 | vol. 5 | iss. 1 | e9 | p. 13http://medinform.jmir.org/2017/1/e9/
(page number not for citation purposes)

Fernandes & LucenaJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

