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Abstract

Background: Many health organizations allow patients to access their own electronic health record (EHR) notes through online
patient portals as a way to enhance patient-centered care. However, EHR notes are typically long and contain abundant medical
jargon that can be difficult for patients to understand. In addition, many medical terms in patients’ notes are not directly related
to their health care needs. One way to help patients better comprehend their own notes is to reduce information overload and help
them focus on medical terms that matter most to them. Interventions can then be developed by giving them targeted education
to improve their EHR comprehension and the quality of care.

Objective: We aimed to develop a supervised natural language processing (NLP) system called Finding impOrtant medical
Concepts most Useful to patientS (FOCUS) that automatically identifies and ranks medical terms in EHR notes based on their
importance to the patients.

Methods: First, we built an expert-annotated corpus. For each EHR note, 2 physicians independently identified medical terms
important to the patient. Using the physicians’ agreement as the gold standard, we developed and evaluated FOCUS. FOCUS
first identifies candidate terms from each EHR note using MetaMap and then ranks the terms using a support vector machine-based
learn-to-rank algorithm. We explored rich learning features, including distributed word representation, Unified Medical Language
System semantic type, topic features, and features derived from consumer health vocabulary. We compared FOCUS with 2 strong
baseline NLP systems.

Results: Physicians annotated 90 EHR notes and identified a mean of 9 (SD 5) important terms per note. The Cohen’s kappa
annotation agreement was .51. The 10-fold cross-validation results show that FOCUS achieved an area under the receiver operating
characteristic curve (AUC-ROC) of 0.940 for ranking candidate terms from EHR notes to identify important terms. When including
term identification, the performance of FOCUS for identifying important terms from EHR notes was 0.866 AUC-ROC. Both
performance scores significantly exceeded the corresponding baseline system scores (P<.001). Rich learning features contributed
to FOCUS’s performance substantially.

Conclusions: FOCUS can automatically rank terms from EHR notes based on their importance to patients. It may help develop
future interventions that improve quality of care.

(JMIR Med Inform 2016;4(4):e40) doi: 10.2196/medinform.6373
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Introduction

Background and Significance
Greater patient involvement is indispensable in delivering
high-quality patient-centered care. In one effort to achieve this
goal, spurred by the Health Information Technology for
Economic and Clinical Health Act [1,2] and the Centers for
Medicare and Medicaid Services Medicare Electronic Health
Record (EHR) incentive program [3], online patient portals
have been widely adopted by health systems in the United States
[3,4]. In addition to giving patients structured information from
EHRs (eg, laboratory test results and medication lists), the
OpenNotes initiative [5] and the Blue Button movement [6]
allow patients to access their full EHR notes through patient
portals. Early evidence shows improved medical comprehension,
health care management, and outcomes from the OpenNotes
initiative [7-9].

However, the benefits from accessing their full EHR notes
would be compromised if patients cannot comprehend their
notes. EHRs were created for physician-physician
communication, and thus are frequently long and contain
abundant medical jargon. Patients who usually do not have the
same medical training as physicians are likely overwhelmed by
the medical jargon, and therefore face an enormous challenge
in comprehending their notes. For example, EHRs were written

at an 8th-12th-grade reading level [10-13], which is above the

average adult patient’s reading level of 7th-8thgrade in the United
States [14-19]. In addition, 36% of adult Americans have limited
health literacy [19] and have shown difficulty in comprehending
medical jargon [20-25]. In fact, limited health literacy has been
identified as one of the major barriers to patient online portal
use, which includes the interpretation of information from EHRs
[26-28]. Therefore, information technologies that support EHR

comprehension are much needed to supplement the widespread
use of patient portals and EHRs among patients.

To support patient EHR comprehension, this work focuses on
identifying medical terms that matter most to individual patients
in their EHR notes—we used the 2 phrases “medical terms”
and “medical jargon” interchangeably in this paper. Our work
was motivated by 2 reasons. First, medical terms, which are
fundamental to discourse-level EHR comprehension, have been
shown to be obstacles for patients [20-25]. Second, EHR notes
incorporate a comprehensive description of patients’ medical
courses yet patients may care about their immediate concerns.
For example, a radiology report may describe technical details
of tumor images; however, the patient may want to know only
the tumor size, the diagnosis, and the prognosis. When helping
patients comprehend their own EHR notes, the approach of
explaining all the jargon in their notes may likely overwhelm
them and may be unnecessary in the first place.

Therefore, in this study we identify medical jargon most
important to individual patients. Personalized interventions can
then be developed by giving targeted educational materials to
each individual patient.

In order to find out whether medical terms can be prioritized,
we asked physicians to identify terms important to patients in
EHRs. Textbox 1 shows an excerpt from a typical EHR note
from our corpus. Although there are many medical terms in this
piece of text—here we only highlighted a subset of terms
identified by MetaMap [29] for illustration
purposes—physicians identified only 5 terms most important
for patients to know: thrombocytosis, Crohn disease,
budesonide, diabetes mellitus, and metformin. Note that
physicians do not mark many unfamiliar medical terms (eg,
complete blood count [CBC], hematemesis, and epistaxis),
suggesting that they do not rank terms based on their difficulty
levels.

Textbox 1. A sample electronic health record text where physicians identified important medical terms (bracketed with angle brackets). Other medical
terms are italicized.

xxx is a xx-year-old man referred for evaluation of <thrombocytosis>. Prior CBCs from xxx through xxx revealed platelet counts ranging from 400,000
to 500,000, but no more recent studies are available. He has long-standing <Crohn disease> and although he says he has not had gastrointestinal
bleeding in the past, he has been given iron, which he is taking twice daily. He has black stool, but notes no blood and he has not had hematemesis.
He notes no blood in his urine or sputum and he has no epistaxis. He discontinued the use of iron yesterday because he thought that might alleviate
his gastrointestinal complaints, but he does not feel different today. He is cared for by Dr. xxx at xxx Hospital Medical Center in xxx. He has no
history of prior cancers, tuberculosis or other infectious diseases. He has been taking <budesonide> for his <Crohn disease>. He has no unexplained
fevers, although he states he often feels hot. He has no soaking sweats and has not had unexplained weight loss. He believes he was referred to an
oncologist many years ago at xxx, but he cannot recall the reason for that referral, who the doctor was, or what the findings were. He often feels queasy
and nauseated, but has no vomiting. He has loose stools up to 4 days per week, but has had a stable pattern of <Crohn disease>. Also notable for
<diabetes mellitus> for which he takes <metformin> and has required no insulin and has had no complications of retinopathy or renal dysfunction.
<Crohn disease> as described above and an enlarged prostate.

Our aim was to develop a supervised natural language
processing (NLP) system called Finding impOrtant medical
Concepts most Useful to patientS (FOCUS) to automatically
rank those EHR (patient)-specific important terms as high. This
task was challenging, as the problem could not be solved by
using only simple strategies such as term unfamiliarity, term
frequency, and handcrafted rules (details in the Discussion
section). We therefore built FOCUS with supervised learning
and rich features.

To the best of our knowledge, our work is the first to
successfully rank medical terms in EHR notes by focusing on
patients’ needs. This is an important step toward information
reduction and personalized interventions to improve patient
EHR comprehension. Our contributions are multifold. First, we
defined a new NLP task of prioritizing or ranking medical terms
that are important for patients. Second, we developed a
state-of-the-art learning-based NLP system to automate the task.
Third, we explored novel semantically motivated learning
features.
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By using a robust learning framework, FOCUS can be readily
adapted to other NLP tasks including summarization and
question answering.

Related Works

Natural Language Processing Systems Facilitating
Concept-Level Electronic Health Record Comprehension
There has been active research on linking medical terms to lay
terms [11,30,31], consumer-oriented definitions [12] and
educational materials [32], and showing improved
comprehension with such interventions [11,12].

On the issue of determining which medical terms to simplify,
there is previous work that used frequency-based and/or
context-based approaches to check if a term is unfamiliar to the
average patient or if it has simpler synonyms [11,30,31]. Such
work focuses on identifying difficult medical terms and treats
these terms as equally important.

Our approach is different in 2 aspects: (1) we focus on finding
important medical terms, which are not equivalent to difficult
medical terms, as discussed in the Background and Significance
subsection; and (2) our approach is patient centered and
prioritizes important terms for each EHR note of individual
patients. We developed several learning features, including term
frequency, term position, term frequency-inverse document
frequency (TF-IDF), and topic feature, to serve this purpose.

It is worth noting that our approach is complementary to
previous work. For example, in a real-world application, we
can display the lay definitions for all the difficult medical terms
in a patient’s EHR note, and then highlight those terms that
FOCUS predicts to be most important to this patient.

Single-Document Keyphrase Extraction
Our work is inspired by, but different from, single-document
keyphrase extraction (KE), which identifies terms or phrases
representing important concepts and topics in a document. KE
targets topics that the writers wanted to convey when writing
the documents. Unlike KE, our work does not focus on topics
important to physicians (ie, the writers and the target readers
when writing the EHR notes), but rather focuses on patients,
the new readers of the notes.

Both supervised and unsupervised methods have been developed
for KE [33]. We use supervised methods, which in general
perform better than unsupervised ones when training data is
available.

Most supervised methods formulate KE as a binary classification
problem. The confidence scores output by the classification
algorithms are used to rank candidate phrases. Various
algorithms have been explored, such as naïve Bayes, decision
tree, bagging, support vector machine (SVM), multilayer
perceptron, and random forest (RF) [34-43]. In our study, we
implemented RF [43] as a strong baseline system.

KE in the biomedical domain mainly focused on literature
articles and domain-specific methods and features [44-47]. For
example, Li et al [44] developed a software tool called keyphrase
identification program (KIP) to extract keyphrases from medical
articles. KIP used Medical Subject Headings (MeSH) as the

knowledge base to compute a score to reflect a phrase’s domain
specificity. It assigned each candidate phrase a rank score by
multiplying its within-document term frequency and
domain-specificity score.

Different from the aforementioned approaches, we treat KE as
a ranking problem and use the ranking SVM (rankSVM)
approach [48] as it has been shown to be effective in KE in
scientific literature, news, and weblogs [42].

Common learning features used by previous work include
frequency-based features (eg, TF-IDF), term-related features
(eg, the term itself, its position in a document, and its length),
document structure-based features (eg, whether a term occurs
in the title or abstract of a scientific paper), and syntactic
features (eg, the part-of-speech [POS] tags). Features derived
from external resources, such as Wikipedia and query logs, have
also been used to represent term importance [39,40]. Unlike
previous work, we explored rich semantic features specifically
available to the medical domain.

Medelyan and Witten [45] developed a system that extends the
widely used keyphrase extraction algorithm KEA [34] by using
semantic information from domain-specific thesauri, which they
called KEA++. KEA++ has been applied to the medical domain,
where it used MeSH vocabulary to extract candidate phrases
from medical articles and used MeSH concept relations to
compute its domain-specific feature. In this study, we adapted
KEA++ to the EHR data and used the adapted KEA++ as a
strong baseline system.

Methods

A FOCUS Corpus of Electronic Health Records With
Expert-Annotated Important Concepts
We created a FOCUS corpus, which is a collection of 90
representative EHR discharge summaries and progress notes
from the University of Massachusetts Memorial Hospital
outpatient clinics. To maximize the representativeness, we
selected notes from patients with 6 different but common
primary clinical diagnoses: cancer, chronic obstructive
pulmonary disease, diabetes, heart failure, hypertension, and
liver failure. We deidentified the notes and then asked physicians
to identify, for each note, terms important to patients.

We adopted the expert annotation approach for this study for
the following reasons. First, annotating important medical terms
requires full comprehension of an EHR note. Such level of
comprehension may be beyond the capacity of average patients
[11-13,30]. Previous work shows that even lay people with
higher education (ie, college or graduate degrees) have difficulty
with comprehending EHR notes [11,30]. Second, physicians
have specific medical training for communicating with patients
and understanding their needs. Physicians' expertise would guide
patients in understanding the most important aspects that are
medically relevant to their health and well-being.

We developed an annotation guideline (see Multimedia
Appendix 1) to instruct physicians to identify at least 5 of the
most important medical terms per EHR note, which the patients
need to know in order to comprehend the note for the most
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important aspects medically relevant to their health and
treatment course. For each note, we obtained annotations from
2 physicians and used the agreement from both physicians as
the gold standard for our experiments. Three physicians did the
annotation and annotated 48, 68, and 64 notes, respectively.

FOCUS

Overview
Figure 1 shows the overview of FOCUS and its corpus and
evaluation. In Step 2 of the approach, FOCUS first extracts
candidate terms (Step 2.1) and then ranks them (Step 2.2). Since
we focused on ranking in this study, we used MetaMap [29], a
widely used medical concept detection tool, to automatically
identify candidate terms from each EHR note. We then applied
rankSVM to rank the terms.

Figure 1. Overview of our approach: building the FOCUS corpus (Step 1), developing FOCUS (Step 2), and evaluation (Step 3). FOCUS: Finding
impOrtant medical Concepts most Useful to patientS; EHR: electronic health record; rankSVM: ranking support vector machine.

Ranking Support Vector Machine
RankSVM [48] is a pairwise ranking method, which can learn
to rank important terms in each EHR note as higher than
nonimportant ones.

Our training data for rankSVM contain the following: (1) a set
E of EHR notes; (2) a list of candidate terms Te associated with
each EHR note e; and (3) for a term t   Te, a d-dimension feature

vector xt  R
dand a binary target value (ie, label) yt which denotes

whether t is an important medical term in e. In our case, yt is 1
if t is important in e and 0 if not. In the general framework of
ranking, yt corresponds to the ranking order of t, and the more
important t is, the higher order and the larger value of yt it has.

Let P be the set of term pairs (i, j), where term i and term j occur
in the same EHR note and term i is important (yi=1) and term
j is not important (yj=0) (ie, P={ (i, j) | yi> yj}). The rankSVM
model is built by minimizing the objective function [48], as
defined by equation 1 in Figure 2, where w is the feature weight
vector; εi,j is the slack variable that measures the model’s
soft-margin error for term pair (i, j); C is a tuning parameter;
and m is the total number of term pairs in P. The formulation
in equation 1 in Figure 2 finds a large-margin linear function
that minimizes the number of pairs of training examples
swapped with respect to their desired ranking order.

We chose SVMrank[49], which implements rankSVM in an
efficient way by using a cutting-plane algorithm and learns from
large sparse data in linear time.

Figure 2. Objective function used in training ranking support vector machine.

Baseline Features for Ranking
We implemented 9 features commonly used for KE
[34,35,37,50,51].

Frequency-Based Features

The frequency-based features include term frequency, inverse
document frequency, and TF-IDF. Term frequency is the number
of occurrences of a candidate term in each individual EHR note.
Inverse document frequency and TF-IDF are calculated in the
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standard way (see Multimedia Appendix 2). We used 6,237
clinical notes, which were selected by using the same 6
diagnoses used to select the 90 notes for the FOCUS corpus, to
compute inverse document frequency.

Term Structure-Based Features

The term structure-based features include term length (TL) (ie,
the total number of words contained in a term), the length of

the longest word (by character) in a candidate term (maxWL),
and a combined feature of TL and maxWL [51], as defined in
equation 2 in Figure 3.

Since longer terms and words are less likely to be familiar to
patients, these features may help distinguish between unfamiliar
and common or familiar terms. Thus, these features may help
rank as low EHR terms that are too common to be important
(eg, blood and pain).

Figure 3. Equation for defining a combined feature of TL and maxWL. TL: term length (ie, length of a candidate term by word); maxWL: length of
the longest word (by character) in a candidate term.

Position Feature

The position feature is the number of words preceding the first
occurrence of a candidate term, normalized by the total number
of words in the document. We used this feature because we
found that the medical terms most specific to a patient often
occur early in his/her EHR notes.

Lexical Feature

The lexical feature was found to be useful in domain-specific
KE [35]. In our experiments, we used Porter’s stemmer to
normalize terms. Since EHR data is noisy, we empirically
include a stemmed term only if it occurs at least 3 times in the
training data to eliminate misspelled words.

Part-of-Speech Feature

We used the POS tag of the head word of each candidate term,
as generated by the clinical Text Analysis and Knowledge
Extraction System (cTAKES) [52].

Additional Features for Ranking

Distributed Word Representation (Word Embedding)

Word embeddings are distributed vector representations of
words learned from large unlabeled data. Words sharing similar
semantics and context are expected to be close in their word
vector space [53].

We include this feature because word embedding has emerged
as a powerful technique for word representation. It has shown
to improve several biomedical and clinical NLP tasks, such as
biomedical named entity recognition [54,55], protein-protein
interaction detection [56], biomedical event extraction [57,58],
adverse drug event detection [59,60], ranking biomedical
synonyms [61], and disambiguating clinical abbreviations
[62,63].

We trained a neural language model to learn word embeddings.
Specifically, we used Word2Vec software to create the
skip-gram word embeddings [53,64]. We trained Word2Vec
using a combined text corpus (over 3G words) of English
Wikipedia, articles from PubMed Open Access, and 99,735
EHR notes from the Pittsburg corpus (Chapman W, University
of Pittsburgh NLP Repository; using this data requires a license).
We set the training parameters based on the study of Pyysalo
et al [65]. We represented multi-word terms with the mean of

individual word vectors. In this work, we used 200-dimension
word vectors, with each dimension normalized to (0,1).

Unified Medical Language System Semantic Type

We mapped the candidate terms to Unified Medical Language
System (UMLS) semantic types by using MetaMap, and
included these semantic types as learning features.

Consumer Health Vocabulary Features

We derived 7 binary features from the consumer health
vocabulary (CHV) [66]. The CHV is a collaborative resource
and incorporates terms extracted from various consumer health
sites, such as queries submitted to MedLinePlus and postings
in health-focused online discussion forums [67-73]. The CHV
contained 152,338 terms, most of which are consumer health
terms [71-73]. Zeng et al [72] mapped these consumer health
terms to the UMLS concepts by a semiautomatic approach. As
a result of this work, the CHV encompasses lay terms as well
as corresponding medical jargon.

In the FOCUS corpus, 89% of important terms are in the CHV,
while a smaller percentage of nonimportant terms (76%) are in
the CHV. This suggests that the presence of an EHR term in
the CHV is indicative of the term’s importance from the
perspective of patients (ie, health consumers). We therefore
include a binary feature to denote whether a candidate term is
in the CHV.

In addition, we derived 6 binary features from CHV familiarity
scores. For extended usability, the CHV assigns familiarity
scores to 57.89% (88,189/152,338) of its terms. CHV familiarity
scores estimate the likelihood that a medical term can be
understood by an average reader [74] and have values between
0 and 1, with 1 being most familiar and 0 being least familiar.
CHV provides different types of familiarity scores [30].
Following Zeng-Treitler et al [30], we used the combined score
and converted the continuous value into categorical features.
Specifically, we divided the feature value range [0,1] into 5
equal-range bins, resulting in 5 binary features. The intuition
behind these features is that medical terms with different levels
of familiarity may be different in their importance to patients.
For example, common terms (ie, terms that fall into the highest
bin) such as disease and physicians are too general to be
important. In addition, we included the sixth binary feature to
indicate whether a candidate term has a CHV familiarity score.
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Topic Features

Topic features are real-valued features in (0,1) to indicate the
topic coherence between a candidate term and the EHR note
containing this term. We compute topic features P(t|e) by
equations 3 and 4 in Figure 4, where P(t|e) is the probability of
a candidate term t conditioned on an EHR note e; P(w|e) is the
probability of a word w conditioned on e; P (w | topici) and P
(topici | e) are word-topic and topic-EHR note distributions

estimated by the topic model; and K is the number of topics
used in topic modeling.

We trained 3 latent Dirichlet allocation topic models with K set
to 50, 100, and 200, respectively, after testing different Ks on
6,237 clinical notes, which are the same as the notes used to
compute IDF, using the MAchine Learning for LanguagE
Toolkit (MALLET) [75] with default parameters to obtain 3
topic features.

Figure 4. Equations for defining topic feature.

Training and Evaluation Settings
We created the training data from the FOCUS corpus as follows.
We first applied MetaMap to the 90 notes in the FOCUS corpus.
For each note, we took as positive examples those terms that
were both identified by MetaMap and judged by physicians to
be important to patients. We expanded the set of positive terms
by using relaxed string match (details in the Evaluation Metrics
subsection). The remaining terms identified by MetaMap were
used as negative examples. This process resulted in a total of
690 positive and 21,809 negative terms from 90 notes.

Note that our 690 positive terms are less than the 793 terms
annotated by physicians. This is because MetaMap missed some
terms, many of which are multi-words with embedded UMLS
concepts (eg, autologous stem cell transplant and
insulin-dependent diabetic). Although we did not use these
terms for training and for 10-fold cross-validation, we included
them as positive terms for our final evaluation (as described in
the Evaluation Metrics subsection).

We used the aforementioned training set for all the systems
except 1 baseline system, adapted KEA++ (details in the
Baseline Systems subsection), as it had its own procedure for
extracting candidate terms and generating training data.

Previous work has shown that approximately 50-100 documents
are sufficient to train supervised KE systems in the biomedical
domain [45], suggesting that our 90 EHR notes, although a
small size, may be sufficient. Our results empirically validated
this hypothesis.

Baseline Systems

Adapted KEA++
The keyphrase extraction algorithm KEA [34] has been
frequently used as a strong baseline in previous work [42,43,47].
KEA++ [45] is an extension of KEA with the added capacity
for domain adaptation.

KEA++ is based on naïve Bayes and uses the following 4
features: TF-IDF, term position, term length in words, and a
knowledge-based feature node degree. The last feature computes

the number of semantic links in a knowledge base that connect
a candidate phrase to other phrases in the document. In addition,
it supports preselection and filtering of candidate terms by using
controlled vocabularies, which we adapted to the clinical
vocabularies.

Specifically, we included all the UMLS terms identified by
MetaMap from the 90 FOCUS notes. We also included the
complete list of medical terms from 3 comprehensive clinical
vocabularies: MeSH, Systematized Nomenclature of Medicine
(SNOMED), and the ninth revision of the International
Classification of Diseases (ICD-9). To compute the node degree
feature, we mapped terms in this controlled vocabulary to the
UMLS concepts and incorporated concept relations (eg, Is-a
and Part-of) from MeSH, SNOMED, and ICD-9.

Random Forest
RF [76] is an ensemble learning method that combines multiple
decision trees for classification or regression. RF extends the
idea of bagging [77] with a random selection of features [78-80]
to improve robustness and generalizability. The RF classification
me thod  ach ieved  the  s t a t e -o f - the -a r t
performance—outperforming KEA and kernel SVMs—in
extracting keyphrases from scientific literature [43].

We used the RF classification algorithm for our study. Assuming
t is a candidate term from an EHR note e, the prediction of RF
on (t, e), ƒ(t,e), is calculated by equation 5 in Figure 5, where
ƒk(t,e) is the prediction on (t, e) (ie, the predicted possibility of
t being an important medical term in e) by the kth decision tree
among B decision trees built for RF (see more details below).
According to equation 5 in Figure 5, ƒ(t,e) represents the
averaged predicted possibility of t being an important medical
term in e and, therefore, can be used to rank candidate terms in
e.

Each individual decision tree ƒk is built as follows: assuming
the training set contains N labeled examples (ie, N pairs of t and
e, labeled as 1 if t is important in e and 0 if not) represented by
d features, a single tree is built on N examples randomly sampled
with replacement from this training set. When growing the tree,
at each node the algorithm searches a randomly selected subset
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of the d features and selects 1 feature to create an if-then-else
decision rule to branch the tree (ie, splitting the training
examples at this node base on their feature values for the
selected feature). Common criteria for selecting the feature that
best splits a node include Gini impurity and information gain.
When a node contains examples from the same class or its
impurity is below a threshold, splitting stops and the node
becomes a leaf node.

For a new example (t, e), RF assigns (t, e) to a leaf node of each
individual decision tree by applying the decision rules learned
from the training phase. The term ƒk(t,e) in equation 5 in Figure
5 is calculated as the fraction of positive training examples in
the leaf node of the kth decision tree where (t, e) is assigned.

RF uses the same features as FOCUS. We used scikit-learn [81]
to develop RF. We set the parameter B by minimizing the
out-of-bag error during training and used default values for
other parameters.

Figure 5. Prediction function of random forest.

Evaluation Metrics

Precision, Recall, and F-score at Rank n
We report the averaged precision, recall, and F-score at ranks
5 and 10, abbreviated as P5, R5, and F5; and P10, R10, and
F10, respectively. These metrics measure system performance
for top ranks and are widely used to evaluate KE systems. We
computed these metrics for the final evaluation (Step 3 in Figure
1) where we used all the gold-standard important terms as
positive examples, including those that would never be included
in the stage of candidate term extraction.

Area Under the Receiver Operating Characteristic Curve
Area under the receiver operating characteristic curve
(AUC-ROC) is a metric widely used for evaluating ranking
outputs. It computes the area under a receiver operating curve,
which plots the true positive rate (y-coordinate) against the false
positive rate (x-coordinate) at various threshold settings. To
evaluate a system, we compute its AUC-ROC for each EHR
note in the FOCUS corpus and report the averaged value.
AUC-ROC measures the performance of the global ranking.
Because both candidate term extraction and ranking affect the
quality of global ranking, we report 2 AUC-ROC metrics:
AUC-ROCranking and AUC-ROCKE. AUC-ROCranking is
computed on the candidate terms extracted by a system.
Thereby, if a gold-standard important term is missed in
candidate term extraction, it will not affect the system’s
AUC-ROCranking. Since this metric is informative about the
ranking performance of a system, we used it to evaluate the
cross-validation results on ranking candidate terms (Step 2.2 in
Figure 1). AUC-ROCKE is computed by using all the
gold-standard important terms as positive examples and

measures the combined performance of candidate term
extraction and ranking (Step 3 in Figure 1).

In the evaluation step, we use relaxed string match to determine
true positives, as exact match is known to underestimate
performance as perceived by human judges [50,82]. Specifically,
we treat a term from the system output as a true positive if it
either exactly matches or subsumes a gold-standard important
term (eg, non-Hodgkin lymphoma subsumes lymphoma). We
allow subsume but not part-of match in relaxed string match,
as previous work found that the former aligned well with human
judges but the latter did not [82]. For example, a part of an
important term may be too general to be important (eg, disease
in Crohn's disease and iron in iron deficiency).

Statistical Analysis
The paired samples t test was used for significance testing for
the performance difference of 2 systems.

Results

Statistics of FOCUS Corpus
For each note, we treat the terms agreed by 2 physicians as the
gold-standard important terms. In total, the physicians have
identified 793 important medical terms from the 90 FOCUS
notes (mean 9 [SD 5] terms per note). The Cohen’s kappa
coefficient for annotation agreement (microaverage) is .51.
Table 1 summarizes the statistics of the FOCUS corpus.

The important terms identified by the physicians cover a wide
range of topics, as represented by the UMLS semantic types.
Table 2 shows term frequency and example terms for the 8
major topics.
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Table 1. Statistics of the FOCUSa corpus.

N or mean (SD)Characteristics of the FOCUS corpus

90Number of notes, N

816 (133)Number of words per EHRb note, mean (SD)

250 (42)Number of candidate terms identified by MetaMap per EHR note, mean (SD)

9 (5)Number of important medical terms identified by physicians per EHR note, mean (SD)

aFOCUS: Finding impOrtant medical Concepts most Useful to patientS.
bEHR: electronic health record.

Table 2. The 8 major topics in the FOCUSa corpus.

Example termsNumber of important terms, nUMLSb semantic type

autoimmune hemolytic anemia, gastroesophageal reflux, pancytopenia,
Sjogren's syndrome, osteoporosis

295Disease or syndrome

atenolol, vincristine, warfarin, Wellbutrin, Zocor88Organic chemical

alopecia, hematuria, hypertension, NSTEMI (non-ST-elevation my-
ocardial infarction), retinopathy

59Finding

dermoid, large B cell lymphoma, pancreatic neoplasm, thyroid nodule35Neoplastic process

chemotherapy, dialysis, immunosuppression, kidney transplantation,
pancreatectomy

34Therapeutic or preventive procedure

basal insulin, Rituxan, Neupogen, Synthroid, hemoglobin A1C, HPL
(human placental lactogen)

30Amino acid, peptide, or proteinc

atrial fibrillation, autonomic dysfunction, BPH (benign prostatic hy-
perplasia), microscopic hematuria, systolic dysfunction

25Pathologic function

thyroid ultrasound, echocardiogram, endoscopy, biopsy, cardiac
catheterization

17Diagnostic procedure

aFOCUS: Finding impOrtant medical Concepts most Useful to patientS.
bUMLS: Unified Medical Language System.
cElectronic health record terms in this topic were split into 2 subtopics: medicine (denoted by their ingredients) and laboratory measure.

Most of the important terms annotated by physicians are specific
to individual patients or notes. We used 2 criteria to select terms
that may in general be important to patients: (1) the term occurs
in more than 10% (9/90) of notes in the FOCUS corpus; and
(2) the term was annotated as an important term for over 50%
of the notes containing it. Only 4 terms were qualified and
selected (the 2 bracketed numbers following the terms are the
number of notes containing the term and the number of notes
for which the term was annotated as important): coronary artery
disease (20/14), osteoarthritis (19/10), anemia (13/7), and
prednisone (10/6).

In addition, we made several observations from the FOCUS
corpus. First, physicians typically excluded highly
domain-specific terms that are very difficult for patients to
understand. For example, the terms describing surgical
procedures in detail or the anatomical parts of organs were
excluded. Second, physicians often selected diseases and other

information that are of immediate concern to patients, thus
excluding other comorbidity diseases, for example. 

Candidate Term Extraction
On average, adapted KEA++ extracts 342 candidate terms per
note from the FOCUS corpus, which match 86% of the
gold-standard physician annotated terms; FOCUS (the same for
RF) extracts 250 candidates per note, which match 89% of the
gold-standard terms.

Evaluation on FOCUS Corpus
Table 3 shows the evaluation results on the FOCUS corpus,
where FOCUS achieves the best results and RF is the second
best.

The performance difference between FOCUS and adapted
KEA++ is statistically significant for all the metrics (P<.001).
The difference between FOCUS and RF is also statistically
significant for all the metrics (see P values in Table 3).
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Table 3. Performance of different natural language processing systems.

AUC-ROCKE
hAUC-ROCranking

gF10fR10eP10dF5cR5bP5aSystem

0.7800.8900.2920.3620.2810.2390.2110.333Adapted KEA++i

0.8210.8910.3460.4160.3390.2990.2670.409RFj

0.8660.9400.3810.4640.3690.3410.3050.462FOCUSk

<.001<.001.02.03.045.01.01.01P (FOCUS vs RF)

aP5: precision at rank 5.
bR5: recall at rank 5.
cF5: F-score at rank 5.
dP10: precision at rank 10.
eR10: recall at rank 10.
fF10: F-score at rank 10.
gAUC-ROCranking: area under the receiver operating characteristic curve computed on the candidate terms extracted by a system.
hAUC-ROCKE: area under the receiver operating characteristic curve (KE: keyphrase extraction) computed by using all the gold-standard important
terms as positive examples.
iKEA++: extension of the keyphrase extraction algorithm KEA.
jRF: random forest.
kFOCUS: Finding impOrtant medical Concepts most Useful to patientS.

Textbox 2. Top-10 terms identified by different natural language processing systems for the full note containing the electronic health record excerpt in
Textbox 1. True positives are italicized.

Adapted KEA++: Crohn disease, cirrhosis, metformin, recent, iron deficiency, thrombocytosis, Crohn, diabetes mellitus, anemia, omeprazole

RF (random forest): cirrhosis, iron deficiency anemia, iron deficiency, thrombocytosis, fenofibrate, alcohol, cheilosis, Crohn disease, myeloproliferative
neoplasms, metformin

FOCUS (Finding impOrtant medical Concepts most Useful to patientS): thrombocytosis, diabetes mellitus, cirrhosis, diabetes, metformin, omeprazole,
iron deficiency anemia, fenofibrate, Crohn disease, budesonide

Textbox 2 shows the top-10 terms identified by each of the 3
systems for the full note containing the EHR excerpt in Textbox
1 (where true positives are italicized). The AUC-ROCKE scores
achieved by the 3 systems on the full note are 0.868 (FOCUS),
0.809 (adapted KEA++), and 0.857 (RF).

Effects of Additional Features
We tested the effects of the additional features on FOCUS and
RF. The results (see Table 4) show that the additional features
improve the performances of both FOCUS and RF substantially
(FOCUS vs FOCUS-base and RF vs RF-base). The difference
is statistically significant for all the metrics except R10 between
RF and RF-base.

We further tested the effect of each additional feature by adding
it on FOCUS-base. The results (see Table A3-1 in Multimedia
Appendix 3) show that each additional feature improves the
baseline features to a certain degree.

We then tested FOCUS’s performance by using only additional
features. The results (see Table A3-2 in Multimedia Appendix
3) show that word embedding is the best single feature, but still
performs significantly worse than using all additional features
for all the metrics (see row 5 in Table A3-2 in Multimedia
Appendix 3 for P values). In addition, using only additional
features performs significantly worse than using all features for
all the metrics (P<.001).
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Table 4. Performance of natural language processing systems with and without the additional features.

AUC-ROCKE
hAUC-ROCranking

gF10fR10eP10dF5cR5bP5aSystem

0.8400.9110.3370.4010.3310.2950.2560.413FOCUS-basei

0.8660.9400.3810.4640.3690.3410.3050.462FOCUSj

<.001<.001.001<.001.003.02.02.03P (FOCUS vs FOCUS-base)

0.7810.8480.3150.3810.3030.2510.2190.349RF-basek

0.8210.8910.3460.4160.3390.2990.2670.409RFl

<.001<.001.046.10.01.01.01.003P (RF vs RF-base)

aP5: precision at rank 5.
bR5: recall at rank 5.
cF5: F-score at rank 5.
dP10: precision at rank 10.
eR10: recall at rank 10.
fF10: F-score at rank 10.
gAUC-ROCranking: area under the receiver operating characteristic curve computed on the candidate terms extracted by a system.
hAUC-ROCKE: area under the receiver operating characteristic curve (KE: keyphrase extraction) computed by using all the gold-standard important
terms as positive examples.
iFOCUS-base: Finding impOrtant medical Concepts most Useful to patientS; uses only the baseline features.
jFOCUS: Finding impOrtant medical Concepts most Useful to patientS; uses the baseline features plus the additional features.
kRF-base: random forest; uses only the baseline features.
lRF: random forest; uses the baseline features plus the additional features.

Discussion

Principal Findings
We have shown that physicians were able to identify important
terms from EHR notes with moderate agreement (Cohen’s kappa
.51). This level of annotation agreement is acceptable for
keyphrase annotation tasks [40,42,83]. We used the physicians’
agreement to obtain high-quality data to develop and evaluate
systems that automated this task.

Automated identification of EHR terms important to patients
is challenging for several reasons. First, although
frequency-based statistics such as term frequency and TF-IDF
are widely used to estimate the importance of a term for a
document, they are less effective for EHRs. For example, in our
data, 56% of important medical terms occur only once in any
individual EHR note. Second, we cannot infer the importance
of a medical term solely based on its unfamiliarity level, as
introduced in the Background and Significance subsection.
Third, physicians’ annotations cannot be represented by simple
patterns. One reason is that most patients in our data have
comorbidity and the important terms identified by physicians
are usually related to only some of their diseases. In addition,
the important terms are spread over a wide range of
topics—details in the Statistics of FOCUS Corpus
subsection—and thus cannot be inferred by manual categorical
rules. Fourth, EHR notes contain abundant medical terms,
among which only a small portion (4% in our case) were
annotated as positive or important. Such imbalanced data pose
extra challenges for supervised learning.

Despite the above challenges, our FOCUS system achieves a
decent 0.866 AUC-ROC, suggesting that the learning-to-rank
model with rich features is effective.

FOCUS Versus Adapted KEA++ and Random Forest
Our experiments show that FOCUS outperformed both adapted
KEA++ and RF.

Using a more sophisticated MetaMap system, FOCUS is more
effective than adapted KEA++ in candidate term extraction, as
reported in the Candidate Term Extraction subsection. MetaMap
is a state-of-the-art lexical tool that is well-configured—using
morphological analysis and nonexact string match—to detect
medical concepts and their corresponding medical terms from
text, while adapted KEA++ uses a simpler approach (ie,
dictionary look-up of stemmed n-grams from text).

We further compared FOCUS and adapted KEA++ on 28
FOCUS notes for which the 2 systems have the same recall on
candidate extraction. FOCUS outperforms adapted KEA++ on
this subset in all the evaluation measures, in particular, with
significant improvements on AUC-ROCranking(0.936 vs 0.903,
P=.03) and AUC-ROCKE(0.875 vs 0.844, P=.03). This indicates
that the rich features and the rankSVM algorithm contribute to
FOCUS’s performance gains.

Despite using the same MetaMap extractor and features, FOCUS
still shows an advantage, outperforming RF in all the evaluation
measures. The performance difference demonstrated that the
ranking-based approach outperformed the state-of-the-art
classification-based approach (RF) for this task. We attribute
FOCUS’s advantage over RF to the rankSVM algorithm used
by FOCUS. Specifically, rankSVM sets its parameters by
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minimizing the number of swapped pairs during its model
training, which is equivalent to maximizing the rank quality as
measured by Kendall’s tau coefficient. In contrast, the RF
algorithm is based on decision trees. The rules guiding the
construction of decision trees (eg, information gain) are not
directly optimizing rank quality.

We further analyzed the top-10 terms identified by the 3
systems. FOCUS, RF, and adapted KEA++ respectively ranked
433, 417, and 379 unique terms in their top-10 lists—since we
have 90 notes, the maximum number of unique terms is 900.
This result indicates that all 3 systems output diversified
top-ranked terms, which are not constrained by a small set of
terms, with FOCUS’s output being the most diversified. We
then identified terms frequently ranked as high (in the top 10)
by each system using 2 criteria: (1) the term was identified as
a candidate term for more than 10% (9/90) of the notes; and (2)
the term was ranked in the top 10 over 60% of the time. The
analysis results (see Table A4-1 in Multimedia Appendix 4)
show that FOCUS and RF, RF and adapted KEA++, and FOCUS
and adapted KEA++ share 6, 4, and 3 terms in their frequently
ranked-as-high terms, respectively. Only 2 terms—
hypothyroidism and chemotherapy —are frequently ranked as
high by all 3 systems.

Effects of Additional Features
Our additional features, when applied jointly, improved both
FOCUS and RF (see Table 4). As FOCUS and RF adopt
different learning schemes—ranking versus classification—these
results suggest that the beneficial effect of our additional features
is generalizable to different learning methods.

Among the additional features, word embedding improves the
AUC-ROC scores most—these scores measure the quality of
the global ranking (see row 2 in Table A3-1 in Multimedia
Appendix 3). This feature has been successfully applied to other
biomedical and clinical NLP tasks. To the best of our
knowledge, our work is the first to apply word embedding to
ranking important terms in EHRs and show its usefulness.

The UMLS semantic type is the best in boosting performance
at top ranks (rank=5 and rank=10, row 3 in Table A3-1 in
Multimedia Appendix 3), suggesting its importance. One reason
why it is useful is that medical terms with certain semantic types
such as medical device and anatomical structure were almost
never annotated by physicians as being important to patients.
This feature, therefore, can help rank those terms lower to
improve quality of top ranks.

Although the 3 topic features only improve the baseline features
slightly, further analysis shows that they, when combined with
other features, improve the performance. In particular, the
FOCUS system using complete features significantly

outperformed the one not using the topic features on AUC-ROC
(P=.03 for both AUC-ROCranking and AUC-ROCKE).

The FOCUS systems that respectively use only all additional
features and only word embedding achieved adequate results,
especially on AUC-ROC scores (see Table A3-2 in Multimedia
Appendix 3). However, they still performed worse than the
system using all features, especially at top ranks.

Error Analysis and Future Work
We manually examined 17 notes, for which FOCUS has either
zero recall at rank 5 or low AUC-ROCKE(<0.800). We identified
3 error patterns.

First, we used relaxed string match for evaluation but did not
allow part-of match, for the reason discussed in the Evaluation
Metrics subsection. However, in some cases, this approach
underestimates the performance. For example, FOCUS counted
it as a mistake if MetaMap recognized stem cell transplant but
not autologous stem cell transplant, the gold-standard term.

Second, FOCUS depends on MetaMap, which makes mistakes.
It failed to identify certain abbreviations as medical terms (eg,
A1c [a lab test for blood glucose], BMD [a lab test for bone
mineral density], CPPD [calcium pyrophosphate deposition
disease], and TSH [a lab test for thyroid stimulating hormone]).
In future work, we may collect a list of common clinical
abbreviations by mining a large EHR corpus and use this list
to enhance medical term identification.

Third, the error is due to data sparsity. Although word
embedding helps overcome data sparsity, FOCUS failed to rank
as high some infrequent medical terms, such as femoral popliteal
bypass and pseudogout. In future work, we will explore
advanced approaches to deal with out-of-vocabulary words.

Limitations
Due to the common bottleneck of creating an expert-annotated
resource, we only annotated 90 EHR notes for the reference
standard and training data. Although this is not a large dataset,
our system FOCUS shows an impressive performance of 0.940
AUC-ROC for 10-fold cross-validation on this data, suggesting
that the data size may be sufficient.

Conclusions
We have presented a new clinical NLP task—identifying
medical terms important to patients from EHRs. We developed
FOCUS, a learning-based NLP system that is based on SVM
learning-to-rank algorithm and rich learning features. The
evaluation done on 90 physician-annotated EHR notes showed
that FOCUS significantly outperformed other state-of-the-art
NLP systems and that the additional features we developed were
beneficial in boosting its performance.
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Abbreviations
AUC-ROC: area under the receiver operating characteristic curve
BMD: bone mineral density
CBC: complete blood count
CHV: consumer health vocabulary
CPPD: calcium pyrophosphate deposition disease
cTAKES: clinical Text Analysis and Knowledge Extraction System
EHR: electronic health record
F5: F-score at rank 5
F10: F-score at rank 10
FOCUS: Finding impOrtant medical Concepts most Useful to patientS
ICD-9: ninth revision of the International Classification of Diseases
KE: keyphrase extraction
KEA: keyphrase extraction algorithm
KIP: keyphrase identification program
MALLET: MAchine Learning for LanguagE Toolkit
maxWL: length of the longest word (by character) in a candidate term
MeSH: Medical Subject Headings
NLP: natural language processing
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P5: precision at rank 5
P10: precision at rank 10
POS: part of speech
R5: recall at rank 5
R10: recall at rank 10
rankSVM: ranking support vector machine
RF: random forest
SNOMED: Systematized Nomenclature of Medicine
SVM: support vector machine
TF-IDF: term frequency-inverse document frequency
TL: term length
TSH: thyroid stimulating hormone
UMLS: Unified Medical Language System
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