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Abstract

Background: Computed tomography (CT) is often viewed as one of the most accurate methods for measuring visceral adipose
tissue (VAT). However, measuring VAT and subcutaneous adipose tissue (SAT) from CT is a time-consuming and tedious
process. Thus, evaluating patients’ obesity levels during clinical trials using CT scans is both cumbersome and limiting.

Objective: To describe an image-processing-based and automated method for measuring adipose tissue in the entire abdominal
region.

Methods: The method detects SAT and VAT levels using a separation mask based on muscles of the human body. The separation
mask is the region that minimizes the unnecessary space between a closed path and muscle area. In addition, a correction mask,
based on bones, corrects the error in VAT.

Results: To validate the method, the volume of total adipose tissue (TAT), SAT, and VAT were measured for a total of 100
CTs using the automated method, and the results compared with those from manual measurements obtained by 2 experts. Dice’s
similarity coefficients (DSCs) between the first manual measurement and the automated result for TAT, SAT, and VAT are 0.99,
0.98, and 0.97, respectively. The DSCs between the second manual measurement and the automated result for TAT, SAT, and
VAT are 0.98, 0.98, and 0.97, respectively. Moreover, intraclass correlation coefficients (ICCs) between the automated method
and the results of the manual measurements indicate high reliability as the ICCs for the items are all .99 (P<.001).

Conclusions: The results described in this paper confirm the accuracy and reliability of the proposed method. The method is
expected to be both convenient and useful in the clinical evaluation and study of obesity in patients who require SAT and VAT
measurements.

(JMIR Med Inform 2016;4(1):e2) doi: 10.2196/medinform.4923
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Introduction

Obesity refers to the over-accumulation of adipose tissue (AT)
in the body. Obesity can be caused by genetic and fat
metabolism abnormalities, hypothyroidism, excessive nutritional
intake, lack of exercise, and stress, and it is known to be a key
factor in chronic diseases [1]. In recent studies, body fat
distribution has been shown to pose a greater health risk than

overall body fat, and among the different types of obesity based
on specific categories of body fat distribution, abdominal obesity
has been reported to pose the greatest risk [2]. Abdominal
obesity increases the prevalence rate of metabolic syndrome
accompanied by coronary artery diseases such as hypertension,
diabetes, hyperlipidemia, and arteriosclerosis [3,4]. Because
visceral adipose tissue (VAT), rather than subcutaneous adipose
tissue (SAT), is recognized as the contributing factor in body
insulin resistance, visceral abdominal obesity is viewed as the
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more clinically important type of abdominal obesity [5].
Furthermore, by causing physical pressure, the accumulation
of heavy VAT can interrupt blood flow to abdominal organs
and decrease organ function (eg, liver). As such, VAT can be
even more deleterious than SAT [6]. The accurate evaluation
and prevention of both SAT and VAT with quantitative fat
measurements are thus important.

In recent clinical trials, diverse methods have been applied to
assess obesity. For example, body mass index (BMI) can be
used to evaluate obesity easily by height and weight
measurements; however, VAT cannot be measured by this
method. On the other hand, methods such as bioelectrical
impedance analysis (BIA), magnetic resonance image (MRI),
and computed tomography (CT) can acquire VAT
measurements. BIA is a technique by which the percentage of
body fat and the area of VAT are estimated by sending a weak-
to high-frequency current through the body and measuring the
bioelectrical impedance [7]. Recently, BIA has been widely
used in diagnosing obesity owing to the simplicity of its
measurement; many reports support its high-degree of accuracy
in body fat mass measurements [8]. However, there are only a
few reports on whether it can satisfactorily reflect the actual
amount of VAT. On the other hand, CT can clearly distinguish
AT from other tissues, and AT can be measured directly from
the cross-sectional images of the tissue. In addition, CT has the
advantage that SAT and VAT can also be directly measured
[9]. Because the measurement method is cumbersome and poses
a risk of radiation exposure, it is not in general use. However,
the additional radiation exposure involved in measuring AT can
be eliminated by using CT images obtained from health
screening or other procedures, and by using low-dose CT, which
is currently being used in the clinic. Finally, MRI, which is
similar to CT, can be used to generate cross-sectional images
and can measure tissue and VAT directly. Despite the advantage
of no radiation exposure [10], MRI has clinical limitations
because of the cumbersome measuring method, high-cost, and
lengthy imaging times.

Among the various obesity evaluation methods, CT is considered
the gold standard in clinical trials due to its high accuracy.
However, AT has to be measured directly from the
cross-sectional images, and when measuring VAT, the
boundaries between SAT and VAT must be clearly defined. In
other words, a substantial amount of time and effort have to be
expended to analyze a single CT image. In abdominal
obesity-related studies, such problems can act as limiting factors
in analyzing large amounts of data or when analyzing a wide
range of AT in the abdomen. Efforts have been made to
minimize the time required to make measurements by
calculating the level of abdominal obesity from a single CT
image at the umbilical level (L4-5 vertebrae), which represents
the entire abdominal fat area [11].

In this study, we attempt to solve these limiting factors by using
an automated, computer image processing technique. By
automating the image processing, the entire abdominal region
can be measured in a relatively short time period. In addition,
it eliminates subjectivity, enabling objective, quantitative, and
reliable measurements to be made. An increasing number of
studies have been conducted on the computerized, automated

measurement of AT. For example, using a single CT image at
the umbilical level, Bandekar et al proposed the use of the active
shape model and fuzzy affinity-based automatic fat analysis to
distinguish between SAT and VAT [12]. In the study, they
compared the results with those obtained manually by experts,
and they calculated and evaluated both accuracy and sensitivity.
They determined the degree of accuracy for SAT and VAT to
be 98.29% (SD 0.62%) and 97.66% (SD 0.98%), respectively
[12]. Zhao et al also reported automated separation of SAT and
VAT using pixel information obtained from radial movement
at increments of 3 degrees from the center of the body from a
single CT image at the umbilical level [13]. In that study, 9
subjects were tested and the differences between the automated
and manual measurements in terms of SAT and VAT were
0.65% and 1.54%, respectively [13]. In another example,
Kullberg et al used a histogram based on MRI images at the
umbilical level range and constructed AT and SAT masks to
isolate each AT [14]. An algorithm was applied to a total of 17
data values, using the manual measurements as the reference,
and obtained true positive measurements for SAT and VAT,
with high accuracy values of 96% (SD 2.3%) and 90% (SD
6.5%), respectively [14]. Although the studies mentioned above
showed a high degree of accuracy, the verification data was
minimal, and the allowed range of measurement was limited to
a single image or restricted to the umbilical level only. In order
to overcome these limitations, we propose a method for the
automatic separation and measurement of SAT and VAT in the
entire abdominal region using CT. By comparing a large amount
of test data with manually measured results, the technical and
clinical utility of the proposed method was verified and
evaluated.

Methods

Study Dataset and Development Environment
This study was approved by the Institutional Review Board
(IRB) of the National Cancer Center of Korea with a waiver of
the requirement for patients’ informed consent (1210160-3).

In this study, abdominal CTs on 100 patients from the National
Cancer Center of Korea were analyzed. Images were obtained
using LightSpeed VCT (GE Healthcare) and Brilliance 64
(Phillips). For each CT scan, an image size of 512 × 512 pixels
and slice thicknesses of 2.5 to 5.0 mm were used. We measured
the abdominal area, which included the region from the
diaphragm to coccyx and excluded the pelvic cavity. Here,
Microsoft Visual Studio (Ver. 2005, Microsoft, Redmond, US)
was used for the development of algorithms and software, and
ITK (Ver. 3.14.0, Kitware, US) and VTK (Ver. 5.10.0, Kitware,
US) were used as libraries. The SPSS package (Ver. 13, SPSS
Inc., US) was used for statistical analysis.

Manual Measurement
The manual measurements reported in this paper were taken
directly by 2 experts using in-house developed software. The
in-house software depicts the AT area using a brush to color
the area directly on the CT image; SAT and VAT are
distinguished by applying different colors to each. For the
convenience of the user, only areas within the AT attenuation
range of -30 to -190 Hounsfield units (HU) in CT and
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multi-planar reconstruction were considered [11,15]. The manual
measurement results were used as the gold standard data in
comparisons with the automated measurement results.

Automatic Measurement
The automated method of body fat proposed measurement
described in this paper consists of the following three tasks: (1)
pre-processing, (2) fat detection, and (3) post-processing. The
complete flowchart of the algorithm is shown in Figure 1.

Figure 1. Algorithm flowchart.

Preprocessing
CT images include various objects such as body, air, bed, and
sheets. The efficiency of the algorithm was enhanced to perform
the analysis only within the body region. The improved
algorithm was applied to the pre-processing stage for the
body-region detection. Unnecessary regions of the CT image
were removed to prevent errors in detecting the body region.
The body-region detection was performed using threshold and
labeling techniques [16]. The air’s HU in CT images has
attenuation lower than -1000 HU [17]. Knowing this, we
eliminated the air region by setting thresholds and detected other
regions by labeling. Subsequently, the body area was acquired
by all the other labels, except the label with the widest area.

Fat Detection
AT in the abdominal area is sorted in SAT and VAT according
to the location of AT and abdominal muscles; the interior of
muscle is classified as SAT and the exterior as VAT. Thus, a
separate mask was created based on the location of the
abdominal muscles.

Creating a separation mask consists of three steps: (1) nonfat
area segmentation; (2) closed path acquisition; (3) and correction
of the closed path (Figures 2-4). Non-fat area detection is a
process for finding the location of the muscle as the base of a
separation mask and is performed by eliminating the abdominal
fat region through thresholds. First, total adipose tissue (TAT)
is obtained by setting a threshold at -30 to -190 HU, the
attenuation range of fat in CT images, and the non-fat area is
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extracted by removing the TAT area from the body area [18].
After extraction, the skin area included in the area using
opening, a morphology-based technique, is deleted. The result
of this process shows that bones and organs inside the abdominal
cavity as well as muscles are detected in the area (Figure 2).
Muscle segmentation is omitted because bones and organs inside
muscle don't affect a closed path, which is detected on the basis
of the outermost muscle coordinates. In addition, the efficiency
of the algorithm is increased by skipping the muscle
segmentation process. Obtaining a closed path is the process
for blocking the parts connected between SAT and VAT
completely, such as the ones shown in Figure 2. The Convex

Hull algorithm was used to detect the shortest closed path [19].
This algorithm determines the convex polygon of the minimum
area included when a set of points or shapes are given. The
Convex Hull results show the complete separation of organ
areas without connecting the parts between SAT and VAT.
However, errors can be generated as a closed path cannot be
perfectly attached to muscle area when detecting a closed path
(Figure 3). Because the errors can affect the quantitative results,
each coordinate is corrected so that a closed path can be closer
to the muscle area. Correction of errors is performed on all the
coordinates that make up a closed path and the procedure is
shown in Textbox 1.

Textbox 1. Procedure for the correction of errors on the coordinates that make up a closed path.

1. Examine whether the closed path is in contact with the organ region relative to the y axis coordinates of the relevant closed path.

2. If it is not in contact, the relevant coordinate is deleted and moved to the location where it is in contact with the organ region.

3. After completing the examination of all closed path coordinates, randomly identify 1 coordinate as the starting point.

4. With the starting point as the standard, set the coordinate located at the shortest distance as the arrival point. After connecting it with a line, set
the arrival point as the new starting point.

5. Repeat Stage 4 until it cannot be performed further.

The lines drawn through this method of coordinate correction
become the new closed path of the organ region and produce
the separation mask by filling in the interior of the closed path.
The separation mask’s outline can be verified in Figure 4 and
the entire coordinate correction process can be observed in
Figure 5.

The produced separation mask sorts and detects for each region
of SAT and VAT. SAT regions can be extracted by removing
the separation mask from the TAT region detected by producing
the separation mask. VAT regions can be detected through an
“AND” operation between TAT and the mask regions.

Figure 2. Result of the threshold application to the visceral region.

Figure 3. Result of the application of the Convex Hull algorithm and threshold.

JMIR Med Inform 2016 | vol. 4 | iss. 1 | e2 | p. 4http://medinform.jmir.org/2016/1/e2/
(page number not for citation purposes)

Kim et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Result of the separation mask.

Figure 5. Process of coordinate correction.

Post-Processing
The fat component inside bones is detected as body fat in the
process of detecting TAT, and it is included in the separation
mask as bones are surrounded by muscles. Consequently, it is
incorrectly detected as VAT. The spine, ribs, and pelvis
surrounding the right and left abdominal cavity from the center
of the back, and AT need be erased. In order to eliminate the
false detection as VAT, a correction mask based on bones was
included. Bones have a pixel range above 1000 HU in CT [17],
and based on that, we set a seed point in the region estimated
as bone and detected them using a 3D region growing algorithm
[20]. Then, a correction mask was made by obtaining a closed
path and applying a closed path-correction method to the
extracted bone region in the same way as the separation mask.
We attempted to apply different correction methods for each
region after dividing the body into 2 regions based on bones.
The regions are divided considering whether the right or left
side of the abdominal cavity is surrounded by bones. The region
that the ribs and pelvis are located in is surrounded on the back,
right, and left sides of the abdominal cavity by bones. Therefore,
it is necessary consider all of the sides of the abdominal cavity
(Area 1). However, only the region of the back side that contains
the spine needs to be imaged (Area 2). Considering these
differences, the region detected as VAT outside a separation
mask (back side, right and left side), as well as inside a
separation mask for Area 1 were eliminated. The region

recognized by the VAT in Area 2 in the back, outside of the
separation mask, as well as inside the separation mask was
removed. Any false-detected VAT was corrected using Area 1
and Area 2.

Results

In this study, we detected and measured the volume of TAT,
SAT, and VAT for a total of 100 CT data using our automated
method (Figure 6). As well, the automated measurement results
(MAUT) were compared with the manual measurement results
obtained by 2 experts (MM1, MM2). A comparative analysis was
carried out between them in order to verify the technical
accuracy and clinical reliability of the proposed method. The
accuracy of the automated measurement method was evaluated
through four kinds of conditional probability including
sensitivity, specificity, accuracy, and Dice’s similarity
coefficient (DSC). The automated measurement results and the
manual measurement results were also compared through
one-way analysis of variance (ANOVA) tests and Bland-Altman
plots (see Multimedia Appendix 1), performing regression
analysis and scatter plots (see Multimedia Appendix 2) to
investigate the correlation between them. Moreover, the
intraclass correlation coefficients (ICCs) between the results of
both measurement methods were determined, and the reliability
between the results examined. For the conditional probability
test, true positive, false positive, true negative, and false negative
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were obtained by calculating, pixel-by-pixel, the position of
VAT, SAT, and TAT detected by the automated and manual
methods. The test results are shown in Table 1. The test results
of MM1 indicate high precision, as the accuracy of MM1 for TAT,
SAT, and VAT is 99.69%, 99.79%, and 99.79%, respectively.

The DSC values for TAT, SAT, and VAT are 0.99, 0.98, and
0.97, respectively. Similar results were obtained for MM2, as
the accuracy and DSC value for TAT is 99.62% and 0.98,
99.77% and 0.98 for SAT, and 99.74% and 0.97 for VAT..

Table 1. The conditional probability test between the automated and manual measurements.

Dice similarity coeffi-
cient

Accuracy, %Specificity, %Sensitivity, %

Automatic measurement (M AUT ) and
manual measurement (M M1 )

0.9999.6999.9697.45TAT

0.9899.7999.9897.24SAT

0.9799.7999.8897.54VAT

Automatic measurement (M AUT ) and
manual measurement (M M2 )

0.9899.6299.8997.39TAT

0.9899.7799.9896.96SAT

0.9799.7499.8197.87VAT

The mean volume of TAT, SAT, and VAT measured by the
automated method was 7913.79 mL (SD 2852.62 mL), 4620.38
mL (SD 1735.76 mL), and 3293.41 mL (SD 1497.11 mL),
respectively. The mean volume for the same items measured
by the manual method was 8021.56 mL (SD 2877.91 mL),
4750.01 mL (SD 1801.47 mL), and 3271.54 mL (SD 1469.16
mL) for MM1, and 7972.33 mL (SD 2889.43 mL), 4757.41 mL
(SD 1822.06 mL), 3214.91 mL (SD 1473.27 mL) for MM2

(Table 2). The correlations are significant between the volumes
of MAUT and MM1 for TAT (r=.999, P<.001), SAT (r=.999,
P<.001), and VAT(r=.999, P<.001) (Multimedia Appendices
2A-C). The correlations between the volumes of MAUT and MM2

are also significant for TAT (r=.999, P<.001), SAT (r=.999,
P<.001), and VAT (r=.999, P<.001) (Multimedia Appendices
2D-F).

Table 2. Comparison and verification between the results of the automated and manual measurements.

P valuecICCP valuebFMean volumea (SD)Item

< .001.99.965.035TAT

7913.79 (2852.62)MAUT

8021.56 (2877.91)MM1

7972.33 (2889.43)MM2

< .001.99.830.186SAT

4620.38 (1735.76)MAUT

4750.01 (1801.47)MM1

4757.41 (1822.06)MM2

< .001.99.928.075VAT

3293.41 (1497.11)MAUT

.3271.54 (1469.16)MM1

3214.91 (1473.27)MM2

aMean volumes and SD measured in milliliter.
bP value for ANOVA test.
cP value for ICC.

One-way ANOVA test results for the volumes of MAUT, MM1,
and MM2 revealed that no significant differences were found

for TAT (F=.035, P=.965), SAT (F=.186, P=.830), and VAT
(F=.075, P=.928; Table 2). Bland-Altman plots for the same
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items showed a good comparability as most volumes were within
1.96 standard deviations from the average position of the
respective volume differences (Multimedia Appendices 1A-F).
ICC values for the volumes of MAUT, MM1, and MM2 indicate
high reliability for all the measuring items with .99 (CI
0.99-0.99, P<.001) for TAT, .99 (CI 0.97-0.99, P<.001) for
SAT, and .99 (CI 0.98-0.99, P<.001) for VAT.

The elapsed time required to measure constant volume with
both the automated and manual methods was compared to
evaluate the usefulness of the proposed method. To do this, 20

data sets were randomly selected out of the 100 total, each
containing a slice thickness of 5 mm. The elapsed time required
to determine TAT, SAT, and VAT, within the range of the
umbilical level (24 12 cm slices) by the automated and the
manual method was measured. We found that the mean elapsed
time required for manual measurements performed by 2 experts
was 718.5 seconds (SD 72.7 seconds) for MM1 and 815.5
seconds (SD 65.8 seconds) for MM2, whereas the automated
method (MAUT) required only 3.62 seconds (SD 0.1 seconds)
(Figure 7).

Figure 6. Automated segmentation and measurement results for SAT (green) and VAT (red).

Figure 7. Comparison of the elapsed time required for measuring body fat within the range of the umbilical level (12 cm).

Discussion

Principal Findings
The previous AT measurement methods with CT were very
tedious and time consuming. As such, many studies have

attempted to find out the association between the indicators of
obesity such as BMI, waist to hip ratio (WHR), and fat
measurements with the typical CT used in clinic [21,22].
Although one CT has some association with diverse indicators
of obesity, there’s a risk of error caused by measurements and
evaluations of a 2-dimensional (2D) cross section of a
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3-dimensional (3D) body. In addition, indicators such as BMI
and WHR are not quantitative. Therefore, we proposed and
verified a new method of separating and measuring SAT and
VAT from the entire abdominal CT automatically by adopting
an image processing technique. The test results of the proposed
method demonstrate a high level of accuracy (99%) for TAT,
SAT, and VAT compared to the results made manually (MM1

and MM2).

The results of our proposed method show a higher degree of
accuracy compared with other reported studies (Table 3).

Bandekar et al [12] applied the active shape model automatic
fat methods based on fuzzy affinity and reported accuracies of
98.29% (SD 0.62%) and 97.66% (SD 0.98%) for SAT and VAT,
respectively. Using a method of obtaining pixel information by
a 3 degree radial movement from the body center to understand
SAT and VAT on CT images, Zhao et al [13] reported
accuracies of 99.35% for SAT and 98.46% for VAT. In another
example, Kullberg et al [14] measured accuracies of 96% (SD
2.3%) for SAT and 90% (SD 6.5%) and VAT using a histogram
based on MRI images in the umbilical level range and
constructed AT and SAT masks to isolate each AT.

Table 3. Comparison of the automated measurement of AT proposed in this paper with previously published studies.

Study

Proposed methodKullberg et al [14]Zhao et al [13]Bandekar et al [12]

CTMRICTCTModality

Volume of entire abdominal
cavity

Volume of umbilical level1 slice at umbilical level1 slice at umbilical levelRange

10017940Number of data
sets

99.78 (0.18)96 (2.3)99.3598.29 (0.62)Accuracy of
SAT, % (SD)

99.76 (0.16)90 (6.5)98.4697.66 (0.98)Accuracy of
VAT, % (SD)

With respect to measurement range, our proposed method can
measure the entire abdominal cavity rather than the existing
methods that are restricted to 2-dimensional levels or only the
umbilical region. While the way of separating SAT and VAT
using templates or masks is similar to other studies, in our
proposed method, the separation mask is generated by
minimizing the number of algorithms based on pixel value,
approaching the anatomical shape. Furthermore, the analysis is
a contributing factor for raising the level of accuracy.

The ANOVA test and ICC results demonstrate the clinical
reliability of the proposed method (Table 2). The ANOVA test
indicates that no noticeable differences were observed between
the automated measurements and the manual measurements
made by the 2 experts for TAT, SAT, and VAT. The ICC results
show a very high level of reliability for TAT, SAT, and VAT
(.99). However, we did find that the automated measurements
had slightly smaller values than the manual measurement for
SAT, while for VAT, the automated measures had the tendency
to be slightly larger. A possible cause for the gap in SAT
segmentation is because intermuscular fat or intramuscular fat
near subcutaneous fat is included as part of subcutaneous fat,
and it is accumulated during the manual measurement. The
difference in VAT segmentation might be caused by the
detection of some adipose tissue inside the bone as VAT during

the correction process of the automated measurement. Although
their impact on the overall segmentation results was negligible
since the rate of error was low, an even higher degree of
accuracy can be anticipated as the algorithms are improved in
the future. The time-shortening effect of the automated method
shows the time reduction to be about 200 fold compared to the
manual method for a constant range (Figure 7). Based on this
result, we can estimate that the time required to manually
measure an abdominal CT consisting of 150 images with a 3
mm thickness to be approximately 80 min while the same can
be done using the automated method in approximately 20
seconds. This supports the usefulness and power of the
automated method. Although the proposed method uses CT for
measurement, the structure of the algorithm is based on
anatomical shape. Therefore, the potential exists to apply it to
other imaging methods such as MRI.

Conclusions
Measuring AT by the proposed CT method allows for a more
quantitative and objective measurement result in a time efficient
manner. As well, the simple measurements of VAT enabled by
the new method will be very useful in evaluating visceral
abdominal obesity. Furthermore, we expect that the proposed
method will be more convenient and useful in clinical
evaluations and studies on patients’ abdominal obesity levels.
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Multimedia Appendix 1
Bland-Altman plots.

[PDF File (Adobe PDF File), 569KB-Multimedia Appendix 1]

Multimedia Appendix 2
Scatter plots.

[PDF File (Adobe PDF File), 418KB-Multimedia Appendix 2]
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