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Abstract

Background: Linking medical records across different medical service providers is important to the enhancement of health
care quality and public health surveillance. In records linkage, protecting the patients’ privacy is a primary requirement. In
real-world health care databases, records may well contain errors due to various reasons such as typos. Linking the error-prone
data and preserving data privacy at the same time are very difficult. Existing privacy preserving solutions for this problem are
only restricted to textual data.

Objective: To enable different medical service providers to link their error-prone data in a private way, our aim was to provide
a holistic solution by designing and developing a medical record linkage system for medical service providers.

Methods: To initiate a record linkage, one provider selects one of its collaborators in the Connection Management Module,
chooses some attributes of the database to be matched, and establishes the connection with the collaborator after the negotiation.
In the Data Matching Module, for error-free data, our solution offered two different choices for cryptographic schemes. For
error-prone numerical data, we proposed a newly designed privacy preserving linking algorithm named the Error-Tolerant Linking
Algorithm, that allows the error-prone data to be correctly matched if the distance between the two records is below a threshold.

Results: We designed and developed a comprehensive and user-friendly software system that provides privacy preserving record
linkage functions for medical service providers, which meets the regulation of Health Insurance Portability and Accountability
Act. It does not require a third party and it is secure in that neither entity can learn the records in the other’s database. Moreover,
our novel Error-Tolerant Linking Algorithm implemented in this software can work well with error-prone numerical data. We
theoretically proved the correctness and security of our Error-Tolerant Linking Algorithm. We have also fully implemented the
software. The experimental results showed that it is reliable and efficient. The design of our software is open so that the existing
textual matching methods can be easily integrated into the system.

Conclusions: Designing algorithms to enable medical records linkage for error-prone numerical data and protect data privacy
at the same time is difficult. Our proposed solution does not need a trusted third party and is secure in that in the linking process,
neither entity can learn the records in the other’s database.

(JMIR Med Inform 2014;2(1):e2) doi: 10.2196/medinform.3090
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Introduction

Electronic Patient Records
With the popularity of electronic patient records and the
expanded use of medical information systems [1], nowadays
many different health care providers store medical records of
patients electronically. In many cases different health care
providers hold the same patient’s data. To enhance the quality
of health care treatment, for example, in regional health
information networks, often it is required to gather information
about the same patient from different providers [2]. In order to
identify whether a particular patient’s information is held by
more than one health care provider or not, a matching technique
is used on the key attributes of the patient’s demographic
information [2]. As another example, public health surveillance
often requires linking patient records from different health care
providers [1]. In order to monitor the quality of health care
treatment provided in a region and to analyze a patient’s
medication interaction, it is very helpful to collect correlated
data from different sources [3], (eg, clinics, pharmacy,
laboratory, and health care providers).

Keeping Patient Information Secure and Private
With the increasing needs of keeping and linking electronic
patient records, it is very challenging to maintain security and
preserve privacy. Under the regulations of the Health Insurance
Portability and Accountability Act (HIPAA) [4], preserving
patient’s privacy is important in linking the patient’s data. As
medical databases contain different identifiers of a patient (eg,
patient’s name, surname, date of birth, Social Security
Number-SSN, contact number, address, etc), using these
identifiers in their actual form for linking purpose violates
privacy. Moreover, due to privacy, security, and business
concerns, different health care providers may not be willing to
reveal their health data information other than the linking result
to the other provider. Among existing research works, Shapiro
et al and Vest [1,2] illustrated some approaches toward health
information exchange. One obvious approach is to link data
using the identifiers in encrypted format [5-8]. An elegant
approach to encrypt identifiers is using one-way hash functions
as in Quantin et al and Quantin et al [7,8]. To ensure security,
these methods are based on the irreversible transformation
property of one-way hash functions on identification data. These
methods are vulnerable to some common cryptographic attacks.
In Quantin et al [8], the authors proposed a computerized hash
encoding and anonymous record linkage procedure on medical
information. To consolidate security against dictionary attack,
Quantin et al [8] used two pads, one for the sender and the
information and the other one for the recipient. Some other
approaches have been proposed regarding privacy preserving
medical records linkage algorithms [9,10]. A trusted third party
has been used in Churches and Christen [10], to make the
algorithm more secure. Here each party is involved in computing
the set of bigrams for each string. Each party exchanges the
power set of encrypted bigrams with the trusted third party and
then string similarity is performed using the Dice coefficient.
However, these approaches usually have high false negative
rates. Using indirect pseudonym identifiers [9], besides giving

the patients control over what information is revealed about
them, an architecture has been proposed to link medical records.

Some algorithms on privacy preserving data matching are
proposed in database and data mining research fields. In Lindell
and Pinkas [11], the authors have proposed a solution where
two parties can run a data mining algorithm on the union of
their own confidential databases, without revealing any
unnecessary information. In this particular solution, the authors
focused on the problem of decision tree learning, as the input
sizes of data mining algorithms are huge and the data mining
algorithms themselves are very complex. At each party’s end,
this method uses a computation of the same order as computing
the Iterative Dichotomiser 3 algorithm on its own databases. It
combines the result using cryptographic tools. Some solutions
of privacy preserving record linkage are based on the perturbed
information. For example, Agrawal and Srikant [12] used a
randomizing function such as the Gaussian function or uniform
perturbations to perturb the sensitive data and build a decision
tree classifier from these perturbed data. This solution offers a
reconstruction procedure to accurately estimate the original data
value distribution. The cryptographic technique, which relies
on the secure multi-party computation (SMC) Protocol [13],
computes functions over private inputs. Scannapieco et al [14]
proposed a more efficient protocol based on cryptographic
techniques, which preserves privacy of database schemas. Here,
the authors consider the scenario that two parties want to link
their data in string format and can have different schemas. They
propose a protocol that consists of data matching and schema
matching protocol. The protocol builds an embedding space
and two parties embed their data strings using a variant of Sparse
Map [15] ensuring the contractiveness of the embedding. A
semihonest third party collects the embedded strings from the
two parties and computes the similarities. Whereas Agrawal
and Srikant [12] concentrated on exact matching, Scannapieco
et al [14] focused on approximate matching. A hybrid method
that combines both the data perturbation and cryptographic
techniques is presented in Inan et al [16]. The basic idea of this
method is to first classify the data into two classes as matches
and mismatches, and then apply the general SMC protocol to
compute the distance for the records in the matches’ class. A
querying party is introduced to provide the classifier that
determines matching record pairs. The problem with this method
is that general SMC protocols are costly to use in practice. In
Scannapieco et al and Inan et al [14,16], the proposed solutions
used a trusted third party, which is a major issue since the
Web-based trusted third party may not be a good choice to link
records in a privacy preserving way.

Some recent works [17-20] focused on security and privacy in
biological services and in medical data. By secure encapsulation
and publishing of bioinformatics software in a cloud computing
environment, Zhang et al [17] have derived a prototype system
of the biological cloud. While they worked on only biological
services and focused on achieving a prototype system of the
biological cloud, our solution works on different databases and
concentrates on linking these different databases in a privacy
preserving manner. In Gkoulalas-Divanis and Loukides [18],
the authors have discussed medical data sharing by preserving
privacy and data utility. Here they have given a clear picture
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about the data that generally is used for data sharing purposes,
different techniques for privacy preserving data sharing, and
different types of threats. A new algorithm has been proposed
in Mohammed et al [20] for heterogeneous health data sharing
in privacy preserving manner. The proposed algorithm considers
health data containing both relational and set-valued data and
accomplishes “element-of” differential privacy. In
Gkoulalas-Divanis and Loukides [18], the authors have
discussed different types of medical data, for example,
demographics, clinical information, text, and genomic
information, and Mohammed et al [20] worked on heterogeneous
medical data. In our solution, instead of different categories of
medical data and heterogeneous health data, we concentrate on
textual and numeric data and further categorize them into
error-free data and error-prone data. Kum et al [19] focused on
privacy preserving interactive record linkage. The authors have
given a solution by proposing a computer-based third party
record linkage platform, Secure Decoupled Linkage. The
proposed solution decouples the data, obfuscates it, and shares
minimum information via encryption, chaffing, and recoding
respectively, to ensure the protection against attribute disclosure.
A new computer-based third party record linkage platform has
been proposed in Kum et al [19], but our proposed solution does
not need a trusted third party.

However, when we consider the real life scenario, it is possible
that existing works might not meet all the requirements of
medical record linkage all the time in practice. For instance,
earlier researches [5] on data record linkage (ie, sending
identifiers in encrypted format does not allow any kind of error
in identifiers) may happen frequently in real cases. Spelling
mistakes and typographical errors are very common in databases.
Some researches [21-24] have been done toward the error-prone
data and on the missing data. In Weber et al [24], the authors
have proposed a solution to build cross-site records and link
data for a particular patient as he/ she moves between
participating sites. They considered the hypothesis that most
variation in names occurs after the first two letters; this, along
with the date of birth, is one of the most reliable attributes. Out
of this consideration they generated the composite identifier
based on the real identifiers in such a way that the possibility
of identifying a common patient is maximized. This composite
identifier is the hashed string of the first two letters of the
patient’s first name and last name, plus their date of birth.
Considering this composite identifier, they have shown that it
has a higher sensitivity rate compared to other identifiers (eg,
SSN and identifier based on patient’s full name and date of
birth).

Most of the existing algorithms for error-prone data are
concentrated on textual data. They are very useful for linking
records for any customer identifying information. Some
approaches toward error-prone data in privacy preserving record
linkage have been proposed. One of these proposed solutions
is using Bloom filters [21]. This solution applies Bloom filters
with keyed hash message authentication codes on q-grams (for
a particular string, q-grams gives all possible sub-strings of
length q) of identifiers and allows errors in identifiers. Compared
to other privacy preserving record linkage methods with
encrypted string type identifiers, these methods have lower false

negative rates. However, the existing proposed solutions of this
category are designed for textual data. On the other hand,
privacy preserving record linkage for error-prone numeric data
is also very important. For instance, medical records usually
contain ample numerical attributes, such as the patient’s blood
pressure, height, weight, and other test results. In different
medical databases, medical data may be stored in different
precisions. Then even two very close numbers (eg, 392.1 and
392.11) may cause a totally negative linking result. The
consequence of high false negative results may be very harmful,
especially when querying a patient’s records for emergency
treatments.

Aim of the Study
In this paper we aim to address the privacy preserving record
linkage problem with the presence of error-prone data. In Figure
1 we illustrate an example of real-world cases where privacy
preserving record linkage for error-prone data is needed. In this
figure, each of the two hospitals holds a database of patients’
information of its own. They would like to find out the common
patients they share (eg, Angel Smith and Divine Scavo) in order
to perform collaborative research on the shared data. However,
due to the requirement of HIPAA, they cannot exchange data
in clear texts. Moreover, we notice that for the patient Divine
Scavo, all attributes are the same at both hospitals except the
height (one is 162.5 cm and the other is 162.6 cm). If traditional
cryptographic schemes are used, the record belonging to the
same patient will be labeled as a mismatch, leading to an error
result. In order to avoid the mismatch for the records belonging
to the same patient, we need new software to enable privacy
preserving record linkage for error-prone data.

In this paper, we designed and developed comprehensive record
linkage software for medical organizations, which meets the
regulation of HIPAA. Our solution for the privacy preserving
record linkage will work not only for error-free data, but also
for error-prone numerical data, which is never enabled in
existing solutions. The design of our software is open so that
the existing textual matching methods (eg, Weber et al) [24]
can be easily integrated into the system. Our algorithm used in
the software is correct, secure, and efficient. Furthermore, our
solution does not need a trusted third party for any of the offered
cryptographic schemes. This is important because in many cases
such a trusted third party can hardly be found, especially when
the health care providers are from different regions or even
countries. With a trusted third party added to the software we
can use public key cryptographic schemes [25,26]. In particular,
we allow the software users to select one of their collaborators
who is also using our record linkage software, choose some
particular attributes of the database to be matched, and establish
the connection with the collaborator after the negotiation. For
error-free data, our solution offers two different choices for
cryptographic schemes (ie, Secure Hash Algorithm-SHA-1 and
SHA-2) [27]. For error-prone data, we propose a new linking
algorithm named the Error-Tolerant Linking Algorithm. The
Error-Tolerant Linking Algorithm matches the error-prone
numerical data and preserves the data privacy for each user too.
To achieve this goal, we securely measure the Euclidean
distance between two records. If the distance is below a
threshold, we say that there is a link between the two records.
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It is challenging to compute the distance between two records
in a privacy preserving way, such that the other party can learn
no information of the original attribute values. To overcome
this difficulty, we carefully designed a novel algorithm utilizing

the homomorphic property of an efficient cryptographic scheme,
the ElGamal, in its extended form. After the linkage process,
our solution is also capable of managing the matching records
from recent history.

Figure 1. Privacy preserving record linkage problem.

Methods

Design Consideration
This section describes the design consideration of privacy
preserving record linkage in general, and the design
consideration of record linkage for the error-prone numeric data
formally in details. Preserving privacy is a real issue when two
or more organizations are willing to share part of their entire
data without revealing any sensitive information about any
entity to each other. Assume the privacy preserving record
linkage takes place between two medical organizations. Each
organization holds information about its entities (eg,
patients/customers). Along with the different entities, both of
these organizations have some common entities too. It is very
difficult to get the data of only these common entities from the
entire dataset of two organizations while preserving privacy at
the same time.

We can explain the overall problem as a real life scenario. For
example, suppose privacy preserving record linkage takes place
between two hospitals (eg, Hospital A and Hospital B). Figure
2 shows the detailed information/attributes about patients, such
as, patient’s name, date of birth, address, SSN, sex, etc that each
of these hospitals maintains. Hospital A has four patients, Angel
Smith, Divine Scavo, Selene Paul, and Sandrine Pal, and
Hospital B has four patients, Angel Smith, Divine Scavo, Ryan
Solis, and Katie Gomes. All the information of patient Angel
Smith in Hospital A matches with the patient Angel Smith in
Hospital B. Some of the information (ie, name, address, SSN,
age, and sex) of patient Divine Scavo in Hospital A matches
with patient Divine Scavo in Hospital B. Assume that Hospital
A is the initiated organization (ie, it takes the initiative of record
linkage) and Hospital B is the participating organization as it

participates in the record linkage. We use the terms initiated
organization and participating organization afterwards in this
paper. During this entire procedure it is implicit that Hospital
B agrees to share its patients’ database with Hospital A without
revealing any sensitive information about the patients. Now
Hospital A should get Angel Smith as matched data, Divine
Scavo as partially matched data, and Selene Paul and Sandrine
Pal as mismatched data as a result. Note that, here matched data
means the data that belongs to Hospital A as well as to Hospital
B, mismatched data means data that belongs to Hospital A, but
not to Hospital B, and partially matched data means data for an
entity of which some of the attributes match at both hospitals’
end.

Errors in database data are very usual. Therefore privacy
preserving record linkage for error-prone data is necessary too.
For error-prone numerical data we can formulate the problem
as follows. We assume that for any client, the common part of
their records stored in both entities has n attributes. The goal
of the linkage is to find out the records held by party B that are
within a small distance (very close) to the records held by party
A. Formally, the problem for error-prone data (ie, privacy
preserving error-tolerant linkage) in this paper can be defined
as follows–given two databases DA (a1, a2, … . . , am) and DB(b1,
b2, … . . , bm) with the same attributes. The error-tolerant linkage
function takes a tuple <a, DB, τ> as input, where a is any record
in DA and τ is the distance threshold. It outputs a vector of
Boolean numbers, (r1, r2, . . ., rm), where ∀i s.t., 1 ≤ i≤m (Figure
3a shows the output vector), in which Dist () is the distance
function defined for input records (in this paper we use
Euclidean distance). Privacy preserving error-tolerant linkage
guarantees that computing the error-tolerant linkage function
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is secure in the semihonest model [28,29], without a trusted
third party.

By being secure in the semihonest model, we mean that the two
parties (or any other adversary) cannot efficiently obtain more

information than the input and the output of the algorithm. In
particular, for our error-tolerant linking algorithm, the two
parties will know only the output (r1, r2, . . ., rm) and no
information about the values of records (either linked or
not-linked) will be revealed.

Figure 2. Data from two hospitals.

Figure 3. Equations (a) Output Vector, (b) Decryption equation of ElGamal scheme, (c) The expanded message of SHA-1, and (d) Proof of correctness
of Error-Tolerant Linking Algorithm.

Privacy Preserving Record Linkage Schemes
In this subsection, we discuss the overall solution for the design
consideration described in the previous section and schemes of
the solution in details. The main idea is that if the participating
organization sends the entire dataset as encrypted format to the
initiated organization, then it is not possible for any other third
party, as well as the initiated organization, to know about the
real data of the participating organization if the key-pair is
unknown. In our proposed solution, to send data confidentially
to the other party we have considered three cryptographic

schemes: (1) SHA-1, (2) SHA-2, and (3) Error-Tolerant Linking
Algorithm. Before discussing the schemes in detail, we
categorize the data in two different data categories: (1) the
error-free data, and (2) the error-prone data. Among the
above-mentioned three cryptographic schemes, the first two (ie,
SHA-1 and SHA-2) are the basic cryptographic schemes for
privacy preserving error-free data linkage and the Error-Tolerant
Linking Algorithm is for the error-prone data.

The overall flow of running the system is as follows. To encrypt
the data, the initiated organization chooses a dataset name and
the cryptographic scheme, and sends both of them to the
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participating organization. If the participating organization holds
the same dataset, it starts the privacy preserving data linkage
process by sending the data in cipher text format to the initiated
organization. Meanwhile, the initiated organization encrypts its
own dataset by using the cryptographic scheme. After receiving
the data, the initiated organization applies the privacy preserving

matching scheme to obtain the results (ie, the matched,
mismatched, and partially matched data). Figure 4 shows the
diagram of the overall flow of the solution.

We will discuss the Error-Tolerant Linking Algorithm in detail,
and the two existing cryptographic schemes briefly in the
following two subsections, respectively.

Figure 4. Overall flow of the solution.

Scheme for Error-Prone Data
Our proposed new solution for error-prone data, as
above-mentioned, is the Error-Tolerant Linking Algorithm. The
Error-Tolerant Linking Algorithm uses the ElGamal [26] scheme
as the basic building block. In this subsection, we review the
ElGamal scheme first and then will describe the Error-Tolerant
Linking Algorithm in detail. The ElGamal is a public key
encryption scheme. Let G be a cyclic group of prime order p
with generator g. A value x ∈ Zp is randomly chosen as the
private key. The corresponding public key is (p, g, h), where

h=gx. To encrypt the message m, a value r ∈ Zp is randomly

chosen. Then the cipher text is E(m) = (C1, C2)=(gr, m.hr). We
use E(m) in this paper to denote the cipher text of m encrypted
by the ElGamal scheme. The decryption equation of ElGamal
scheme is shown in Figure 3b.

Difficulty of computing discrete logarithms over finite fields
forms the basis for security in the ElGamal. To decrypt a cipher
text, any adversary would have to get the one time random
integer. Determining this random integer is infeasible, as it
requires computing of discrete logarithms.

The Error-Tolerant Linking Algorithm exploits the
homomorphic property of the ElGamal scheme. That is, for two
messages m1 and m2, it satisfies the following property,

E(m1.m2)=E(m1).E(m2) (1)

In addition to linking the data from two different organizations,
the Error-Tolerant Linking Algorithm preserves privacy as well.
We assume that the attributes of records are preprocessed and

converted to integers beforehand. For numerical attributes, this
preprocessing is straightforward by normalizing the original
values to integers within a certain range. For attributes consisting
of strings, we can use a preprocessing method to convert the
strings into integers so that the integers can still keep the
distance between the records. Then our algorithm can be applied
afterwards to complete the records linkage. This algorithm
allows the input record with minor deviations less than a small
threshold τ. The threshold value is to calculate the distance
between the identifiers of two records. In this algorithm, neither
entity can learn the records of each other’s patients.

Algorithm 1 shows the details of our privacy preserving
Error-Tolerant Linking Algorithm. First, party A generates a
pair of keys for the ElGamal scheme and sends the public key
to party B. For each attribute a[j] in the record, party A

computes ga[j] and g((a[j])2), and sends the cipher texts of these
terms to party B. For each record bi held by party B, party B

computes g((bi[j])2) for each attribute bi[j], and encrypts them
using the public key received from party A. Then party B
computes C as shown in line 11 in Algorithm 1. After receiving
the product from party B, party A decrypts it using the private
key and obtains a decrypted value D(C). If D(C) equals any

number in (g0, g1, g2,… … ., gτ ), then it means that

∑n
k=1(a[k]-bi[k])2 ≤τ, and thus we say it is a linking case.

Otherwise, we say record bi does not link to a. The
Error-Tolerant Linking Algorithm is correct. We discuss the
correctness analysis of the Error-Tolerant Linking Algorithm
in the subsection named Correctness Analysis. Figure 5 shows
the Error-Tolerant Linking Algorithm–Algorithm 1.
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Figure 5. Algorithm 1: Error-tolerant linking algorithm.

Schemes for Error-Free Data
For the regular error-free data, we have considered two existing
basic cryptographic schemes: (1) SHA-1, and (2) SHA-2. The
SHA-1 [27] and SHA-2 [27] come under the hash algorithm
family. In this subsection, we will review the SHA briefly. The
SHA is based on the design principle of the Message Digest
Algorithm 4 (MD4) [29]. Both of these algorithms are iterative
and one-way hash functions. The SHA-1 and SHA-2 consist of
two major steps: (1) preprocessing, and (2) hash computation.
In the preprocessing step, every input message is padded and
then split into fixed size message blocks, and this step also
initializes the working variables to be used in hash computation.
The hash computation consists of an 80-step compression

function that iteratively generates hash values hi (ie, the ith hash
value). The 80-step compression function is applied to each of
the message blocks. Generally, two types of inputs are
considered here: (1) chaining input, and (2) message. If the
message is m and chaining input is hi, then the compression

function is g(m, hi) at the ith stage. The chaining input h(i+1) at

the (i+1)th stage is calculated by hi+g(m, hi). The value of the
compression function at the last stage is the hash value of the
message. The SHA-1 and SHA-2 differ in terms of the message
size, block size, word size, and message digest size as given in
Table 1.

In the SHA-1, five working variables are used: (1) a, (2) b, (3)
c, (4) d, and (5) e. The message is represented by 16 32-bit
words, denoted by Mi. The message is then expanded to 80
32-bit words Wi. The expanded message W(i) is shown in Figure
3c.

After that it initializes the working variables and computes the
80-step compression function and intermediate hash values. If
there are n message blocks (ie, M1, M2, … . ., Mn), then the
entire procedure is repeated for n number of times. The resulting
160-bit message digest of the message M is,

H0
(N)||H1

(N) ||H2
(N) || H3

(N) || H4
(N) (2)

Here, Hj
(i) means the jth word of ith hash value.

The procedure of the SHA-2 is similar to the SHA-1. It first
pads the message and divides it into 64-bit message blocks. The
number of working variables here are eight (ie, a, b, c, d, e, f,
g, and h). After initializing the working variables and computing
the 80-step compression function and intermediate hash values,
it generates 512-bit message digest of the message M. The final
message digest of M is,

H0
(N)||H1

(N) ||H2
(N) || H3

(N) || H4
(N) ||H5

(N) ||H6
(N) ||H7

(N) (3)

The SHA-1 and SHA-2 are considered here since it is easy to
compute the hash value of any given message and they are the
one-way hash functions (ie, they have one-way, second preimage
resistant, and collision resistant properties). The SHA-1 and
SHA-2 produce 160-bit and 512-bit hash values, respectively,
for any given message. Therefore, for any given message, there

are 2160 and 2512 possible hash values. It is very difficult to
identify the actual message from this vast range of hash values
[30]. Here in our system, after applying the SHA-1 and SHA-2
on the data, we get the message digest/encrypted data from both
of the parties and apply data matching techniques on those
encrypted data.
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Table 1. The SHA-1 and SHA-2 properties.

Message digest size (bits)Word size (bits)Block size (bits)Message size (bits)Secure hash algorithm name

16032512<264SHA-1

512641024<2128SHA-2

System Analysis
We analyze our schemes, especially the Error-Tolerant Linking
Algorithm, in terms of correctness, privacy, and complexity.

Correctness Analysis
For the proof of correctness, if the two parties follow Algorithm
1, they will jointly compute the correct Euclidean distance
without each party knowing the record from the other party.
The homomorphic property of the ElGamal scheme helps to
prove line 12 in Algorithm 1. (Figure 3d shows the proof of
correctness of Error-Tolerant Linking Algorithm.

If (C)=gk, where k ≤ τ, it means that ∑n
k=1(a[k]-bi[k])2≤τ. Then

we can say that record a is within the distance of τ, from record
bi, and the result of error-tolerant linking is positive.

Privacy Analysis
In this subsection, we explain why the Error-Tolerant Linking
Algorithm is secure (ie, privacy preserving) in the semihonest
model. Being secure in the semihonest model means neither of
the two parties can learn more than the output of the algorithm
from the information received during the algorithm. In
Algorithm 1, the only message received by B is the cipher texts

E(g((a[1])2)), E(g((a[2])2)),…, E(g((a[n])2)), and E(ga[1]), E(ga[2]),…,

E(ga[n]). Since the ElGamal scheme is semantically secure under
the decisional Diffie-Hellman assumption [31], party B cannot

learn anything about g((a[1])2), g((a[2])2),…, g((a[n])2), ga[1], ga[2],…,

ga[n] but the cipher texts. For party A, the message it receives
from party B is C. From the semantic security of the ElGamal
scheme, party A cannot learn the clear texts from party B but

the D(C). Here we note that D(C) and ∑n
k=1(a[k]-bi[k])2 can be

derived from the output of the algorithm by trying different
numbers in a small range of τ. Therefore, we say that party A

knowing D(C) and ∑n
k=1(a[k]-bi[k])2 does not violate the security

requirement and party A can send these values to party B if
needed.

Complexity Analysis
We analyze the computation cost of our algorithm on party A
and party B respectively. The computation cost of party A
includes computing 2n exponentiations, 2n encryptions, and 1
decryption. Suppose that each exponentiation takes time Te.
Then the total computation cost of party A is 2n(Te+TE) +TD,
where TE is the time to perform one ElGamal encryption and

TD is the time to perform one decryption. Values of gk can be
computed beforehand and saved in a table for reference at line
14, Algorithm 1. Party B needs to compute 2nm exponentiations,
nm encryptions, and 2nm divisions/multiplications. So the
computation cost for party B is nm (2Te+TE+2Tm), where Tm is
time for a multiplication, and the definitions of Te, TE are as

above. When there are k records in party A to be linked with
the records held by party B, the total computation time for party
A is nm (2Te+TE)+2nmk × Tm. Note that in the computation
cost, nm (2Te+TE) is not multiplied by k, because as long as
party A does not change their public key, the cipher texts of
party B’s records do not change, and thus they only need to be
computed once.

Results

System Implementation
This subsection explains the system implementation we have
taken into account for the problem described before. We
implement our system using the Eclipse Integrated Development
Environment. We have used the programming language Java.
The entire system is divided into three modules: (1) Connection
Management Module, (2) Data Matching Module, and (3)
Matching Record Management Module. Among these three
modules, the main module is Data Matching Module. The
solution of the privacy preserving record linkage (ie, Data
Matching Module) works for both the error-free data and
error-prone numerical data. The Matching Record Management
Module shows the result/records from the recent past data
matching attempts, and the Connection Management Module
takes care of creating a connection with the collaborator. We
will discuss these three modules in detail in the following
subsections. For the snapshot of selecting a function/module in
our system, see Multimedia Appendix 1.

Connection Management Module
Each party/organization keeps a list of available and reachable
collaborators. To create a connection with another
party/collaborator, each party needs to select that particular
collaborator from the collaborator list. For the snapshot of how
a user selects a collaborator in our system see Multimedia
Appendix 2. To initialize the connection, each and every
organization keeps some initial information about the other
collaborators beforehand. This information contains the Internet
Protocol (IP) address, port number, public-key, private-key pair,
etc. Party A first selects party B from the available participating
collaborator list. Party A uses the corresponding IP address and
port number of party B for creating a connection. We follow
the client-server architecture to implement our system. The
communication between two parties is realized by socket
application program interface (API). Party B (server) creates a
socket to listen to requests from party A (client). Party B can
handle more than one client at a time. In that case, party B
creates a separate socket for each of the requesting clients using
multi-threading. To be precise, a user can work as both a client
and a server at the same time. A user can turn on the server and
continue working as a client using the data matching procedure.
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Data Matching Module
The Data Matching Module is the main module of our system.
To explain this module, we consider there are two parties: (1)
party A, and (2) party B. Party A initiates the matching
procedure and party B takes part in this matching procedure.
Figure 6 shows the entire workflow of the system including
party A and party B.

As shown in Figure 6, once a connection is created between
party A and party B, data transfer between the two parties and
matching can take place. Party A first selects the record set for
matching data. When party A selects the dataset name, then the
corresponding attributes’ list becomes available. Party A selects
the attributes’ names and sends the dataset name along with the
attributes to party B. Party B searches the requested record set
in its set of record sets. If party B has the record set, it sends
the acknowledgement to party A. In response to this
acknowledgement, party A sends the user selected cryptographic
scheme name to party B and encrypts its own selected record
set. Party B encrypts the requested dataset with the requested
cryptographic scheme. Figure 7 shows the snapshot of how a
user selects a cryptographic scheme. For encryption purposes,
the Java cryptography library is used. To encrypt data, we have
considered three cryptographic schemes: (1) SHA-1, (2) SHA-2,
and (3) Error-Tolerant Linking Algorithms. The first two
schemes, SHA-1 and SHA-2, do not require any key pair,
whereas the Error-Tolerant Linking Algorithms needs a key
pair for encryption. As of now, we have considered that the
organization and its collaborator will know the key pair
beforehand. The first two schemes, SHA-1 and SHA-2, work
in the same way. After encrypting the record set, party B sends

the encrypted data to party A. After receiving the encrypted
data from party B, party A applies the data matching technique
on these two encrypted record sets.

The Error-Tolerant Linking Algorithm works in a little bit
different way than the other two cryptographic schemes once
the dataset name and attributes have been selected. Suppose
party A has one medical record to be linked with the records
held by party B. (The flow can be easily extended to the cases
that party A has multiple medical records to be linked.) Party
A sends the encrypted messages generated by their data record
to be linked to party B. Then party B handles the encrypted
messages as described in previous sections (ie, encrypting their
own data record and multiplying their inverse with party A’s
message) and sends the multiplied encrypted message back to
party A. Party A decrypts the message and outputs the linking
result. Party B moves to the next record and repeats the linking
procedure. Party A does not need to encrypt their record again,
but only needs to decrypt the messages sent from party B and
output the linking result.

This repeating process carries on until party B has gone through
all their records. Then party A and party B close the connection
with each other and the privacy preserving linkage is completed.
Figure 8 shows the flow of the Error-Tolerant Linking Algorithm
after selecting the dataset name and attributes. Once the entire
data matching procedure is completed, the client/initiating
organization closes the connection with the server/participating
organization automatically. As a result of the entire data
matching procedure, party A gets the matched, mismatched,
and partially matched result with party B. Figure 9 shows the
snapshot of the matching result of our system.
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Figure 6. The workflow of the system.
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Figure 7. Snapshot of selecting a cryptographic scheme.

Figure 8. Flow of the Error-Tolerant Linking Algorithm between two parties when they are already connected and the dataset name and attributes are
known to party B.
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Figure 9. Snapshot showing the matching result in our system.

Matching Record Management Module
The Matching Record Management Module shows the brief
description of the matching result from the recent past data
matching attempts. It shows the date-time of when the matching

took place, name of the participating organization/collaborator,
name of the record set, and the number of matched, mismatched,
and partially matched data for each and every data matching
attempt in table format. Figure 10 shows the snapshot of the
Matching Record Management Module of our system.

Figure 10. Matching Record Management Module.
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Experiment Setup
We ran our system on computers with a 3.33 GHz Intel Core
i5 processor with 4 GB RAM and a 64 bit operating system.
Both for party A and party B, we have constructed window
applications using Java. The Internet connects the applications
on different computers. The communications between party A
and party B are realized by using socket API. Before running
the system, each client needs to know the IP address and port
number of the server. If a party/server changes their IP address,
then they should inform the other parties/clients. As of now,
we have considered that each party maintains an IP address,
and port list of other parties.

We use two real-world medical datasets, the Pima Indians
Diabetes Data Set and the Heart Disease Data Set [32] to
implement our system. To handle these real-world datasets,
MySQL (an open-source database system) is used. Java
Database Connectivity helps to connect the application front
end and the database end. It is used to access data directly from
the database and to show them to the user.

Experimental Results
We test the scalability of our system in terms of time efficiency.
For each cryptographic scheme in this system, we vary the
number of records and the number of attributes for each record,
and then measure the computation time of our system.

To test the efficiency of our system, we consider two real-world
datasets, the Pima Indians Diabetes Data Set and the Heart
Disease Data Set [32]. In the Pima Indians Diabetes Data Set,
we use at most eight attributes: (1) number of times pregnant,
(2) plasma glucose concentration; a 2 hours in an oral glucose
tolerance test, (3) diastolic blood pressure (mm Hg), (4) triceps
skin fold thickness (mm), (5) 2-hours serum insulin (mm U/ml),

(6) body mass index (weight in kg/height in m2), (7) diabetes
pedigree function, and (8) age (years). Similarly for the Heart
Disease Data Set, we use eight attributes for each record: (1)
age of the patient, (2) sex, (3) chest pain type, (4) resting blood

pressure, (5) serum cholesterol in mg/dl, (6) fasting blood sugar,
(7) resting electrocardiographic results, and (8) maximum heart
rate achieved. For each encryption scheme, except the
Error-Tolerant Linking Algorithm, we vary only the number of
attributes to four, six, and eight and use 100 patients’ records.
For the Error-Tolerant Linking Algorithm, we vary the number
of attributes as well as the number of patients’ records.

For the SHA-1 and SHA-2, we use 100 patients’ records from
both the Pima Indians Diabetes Data Set and Heart Disease Data
Set. For each record, we vary the number of attributes to four,
six, and eight respectively. Figures 11 and 12 show the
computation times of our system using the SHA-1 and SHA-2.
For both of these above-mentioned existing algorithms, the
computation time increases as we increase the number of
attributes. The computation time grows almost linearly as we
increase the number of attributes. Moreover, in every case the
computation time does not even go beyond 0.1 second.

Figures 13 and 14 show the computation time for the
Error-Tolerant Linking Algorithm. We implement the
Error-Tolerant Linking Algorithm with both constant and
varying numbers of attributes. The values of all the attributes
are preprocessed and converted to integers.

Figure 13 shows the computation time of our system when party
A conducts the privacy preserving linking on the Pima Indians
Diabetes Data Set. Party B holds the variable number of records
varying from 100, 200, and 300, while keeping number of
attributes constant as four. The computation time increases
linearly as the size of data to be linked grows. Figure 14 presents
the computation time for the Heart Disease Data Set with
varying numbers of records and varying numbers of attributes.
For this data set too, the computation time increases as the
number of attributes and number of records grow. In both cases,
when the number of records or number of attributes increases,
the computation time increases almost linearly. In addition to
that, for this algorithm too, the computation times never go
beyond 0.1 second.
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Figure 11. Computation time for SHA-1 for 100 records with varying number of attributes to four, six, and eight.
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Figure 12. Computation time for SHA-2 for 100 records with varying number of attributes to four, six, and eight.

Figure 13. Computation time for the Error-Tolerant Linking Algorithm with varying patients’ records from Pima Indians Diabetes Data Set where
each record has 4 attributes.

Figure 14. Computation time for the Error-Tolerant Linking Algorithm with varying patients’ records and varying attributes from Heart Disease Data
Set.
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Discussion

Principal Findings
To enhance the health care quality and public health
surveillance, privacy preserving medical record linkage among
different medical service providers is very important. As the
real-world medical record may well be error-prone, the goal of
our study was to design and develop a software system that
helps medical record linkage for both error-free data and
error-prone data, and preserves privacy too. We have
successfully designed a comprehensive system to achieve this
goal. Moreover, our software meets the regulation of HIPAA
and does not require a trusted third party. Our software preserves
privacy since no party can get to know about another’s database.
As the existing works on error-prone data are limited to textual
data, we propose a novel algorithm named the Error-Tolerant
Linking Algorithm, which works on error-prone numeric data.
We offer two cryptographic schemes, the SHA-1 and SHA-2
for error-free data. We designed our software open and each
cryptographic scheme is independent to each other so that any
existing work/cryptographic scheme for error-prone textual data
can be integrated later. We tested our system on real-world
datasets and got the expected result each time for each of the

offered cryptographic schemes. Besides that, our system is
efficient for real-world datasets and the computation time for
each attempt has never gone beyond 0.1 second.

Limitations
The one limitation of our proposed system is that for error-prone
data our system is limited to only numeric data. Considering
this fact, we designed our software in such a way that any
existing solution for error-prone textual data can be easily
integrated into our system. This makes our software flexible
and open to integrate any existing record linkage scheme for
error-prone textual data.

Conclusions
In this paper, we propose a solution for privacy preserving
record linkage for error-free data as well as for error-prone data.
For error-free data, we offer two existing cryptographic schemes:
(1) SHA-1, and (2) SHA-2. A new algorithm is proposed for
error-prone numeric data. We implement our system fully and
tested it on two real-world data sets. We have shown that our
system is secure, correct, and efficient and does not require a
trusted third party. The experimental results demonstrate the
efficiency of our system.
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